Support vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in comparison with existing SVM algorithms.
The researcher focused on the importance of the physical abilities of the tennis game, as this game is one of the games that are characterized by its specificity in performance as this game is characterized by continuous movement and dealing with different elements, so this game requires the development of muscle strength, which plays an important role in Performance skills in the game of tennis. There are several methods to develop strength, including flat hierarchical technique, which is one of the most common forms of training in the development of muscle strength. As for the research problem, the researcher found a method that has an effect on the development of force. Therefore, the researcher tried to diversify a
... Show MoreThe researcher focused on the importance of the physical abilities of the tennis game, as this game is one of the games that are characterized by its specificity in performance as this game is characterized by continuous movement and dealing with different elements, so this game requires the development of muscle strength, which plays an important role in Performance skills in the game of tennis. There are several methods to develop strength, including flat hierarchical technique, which is one of the most common forms of training in the development of muscle strength. As for the research problem, the researcher found a method that has an effect on the development of force. Therefore, the researcher tried to diversify a
... Show MoreObjective: Breast cancer is regarded as a deadly disease in women causing lots of mortalities. Early diagnosis of breast cancer with appropriate tumor biomarkers may facilitate early treatment of the disease, thus reducing the mortality rate. The purpose of the current study is to improve early diagnosis of breast by proposing a two-stage classification of breast tumor biomarkers fora sample of Iraqi women.
Methods: In this study, a two-stage classification system is proposed and tested with four machine learning classifiers. In the first stage, breast features (demographic, blood and salivary-based attributes) are classified into normal or abnormal cases, while in the second stage the abnormal breast cases are
... Show MoreShadow removal is crucial for robot and machine vision as the accuracy of object detection is greatly influenced by the uncertainty and ambiguity of the visual scene. In this paper, we introduce a new algorithm for shadow detection and removal based on different shapes, orientations, and spatial extents of Gaussian equations. Here, the contrast information of the visual scene is utilized for shadow detection and removal through five consecutive processing stages. In the first stage, contrast filtering is performed to obtain the contrast information of the image. The second stage involves a normalization process that suppresses noise and generates a balanced intensity at a specific position compared to the neighboring intensit
... Show MoreIn this paper the experimentally obtained conditions for the fusion splicing with photonic crystal fibers (PCF) having large mode areas were reported. The physical mechanism of the splice loss and the microhole collapse property of photonic crystal fiber (PCF) were studied. By controlling the arc-power and the arc-time of a conventional electric arc fusion splicer (FSM-60S), the minimum loss of splicing for fusion two conventional single mode fibers (SMF-28) was (0.00dB), which has similar mode field diameter. For splicing PCF (LMA-10) with a conventional single mode fiber (SMF-28), the loss was increased due to the mode field mismatch.
The software-defined network (SDN) is a new technology that separates the control plane from data plane for the network devices. One of the most significant issues in the video surveillance system is the link failure. When the path failure occurs, the monitoring center cannot receive the video from the cameras. In this paper, two methods are proposed to solve this problem. The first method uses the Dijkstra algorithm to re-find the path at the source node switch. The second method uses the Dijkstra algorithm to re-find the path at the ingress node switch (or failed link).
... Show MoreThis study synthesized zeolite 4A, and hierarchical composite structure consisting of zeolite 4A- carbon were successfully prepared. Hydrothermal method was used to grow a layer of zeolite 4A over porous carbon surfaces to enhance mass transfer and increase surface area of zeolite. The products then were used to remove radioactive cesium137Cs from liquid wastewater. Iraqi dates leaves midribs (DM) were used as locally available agricultural waste to prepare low- cost porous carbon, using carbonization method in tubular furnace at 900C for two hours. Hierarchical porous structures including zeolite are prepared by mechanically activating the carbon surface via Ultrasonicating nanoparticles suspension of ground zeolite type 4A.F
... Show More
