During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieved lower computational complexity and number of layers, while being more reliable compared with other algorithms applied to recognize face masks. The findings reveal that the model's validation accuracy reaches 97.55% to 98.43% at different learning rates and different values of features vector in the dense layer, which represents a neural network layer that is connected deeply of the CNN proposed model training. Finally, the suggested model enhances recognition performance parameters such as precision, recall, and area under the curve (AUC).
Change detection is a technology ascertaining the changes of
specific features within a certain time Interval. The use of remotely
sensed image to detect changes in land use and land cover is widely
preferred over other conventional survey techniques because this
method is very efficient for assessing the change or degrading trends
of a region. In this research two remotely sensed image of Baghdad
city gathered by landsat -7and landsat -8 ETM+ for two time period
2000 and 2014 have been used to detect the most important changes.
Registration and rectification the two original images are the first
preprocessing steps was applied in this paper. Change detection using
NDVI subtractive has been computed, subtrac
Asthma is a chronic inflammatory disease that involves the narrowing of the lung airways and excessive mucus production. Resveratrol (RES), a polyphenolic stilbene, is known to control asthmatic attacks via different molecular mechanisms. However, no studies have examined the effect of resveratrol on the microbiome in the ovalbumin (OVA)-induced asthma mouse model. In this study, we induced asthma in BALB/c mice by injecting OVA followed by 7 days treatment with RES. Plethysmography showed that the expiratory resistance in the lung tissue was significantly reduced in the RES treated group, while mean volume, peak expiratory flow, and frequency of respiration was increased. Histopathol
Botnet is a malicious activity that tries to disrupt traffic of service in a server or network and causes great harm to the network. In modern years, Botnets became one of the threads that constantly evolving. IDS (intrusion detection system) is one type of solutions used to detect anomalies of networks and played an increasing role in the computer security and information systems. It follows different events in computer to decide to occur an intrusion or not, and it used to build a strategic decision for security purposes. The current paper
There is various human biometrics used nowadays, one of the most important of these biometrics is the face. Many techniques have been suggested for face recognition, but they still face a variety of challenges for recognizing faces in images captured in the uncontrolled environment, and for real-life applications. Some of these challenges are pose variation, occlusion, facial expression, illumination, bad lighting, and image quality. New techniques are updating continuously. In this paper, the singular value decomposition is used to extract the features matrix for face recognition and classification. The input color image is converted into a grayscale image and then transformed into a local ternary pattern before splitting the image into
... Show MoreA piezoelectric cantilever beam with a tip mass at its free end is a common energy harvester configuration. This article introduces a new principle of designing such a harvester that increases the generated power without changing the resonance frequency of the harvester: the attraction force between two permanent magnets is used to add stiffness to the system. This magnetic stiffening counters the effect of the tip mass on the efficient operation frequency. Five set-ups incorporating piezoelectric bimorph cantilevers of the same type in different mechanical configurations are compared theoretically and experimentally to investigate the feasibility of this principle: theoretical and experimental results show that magnetically stiffened harve
... Show MoreWith the increasing rate of unauthorized access and attacks, security of confidential data is of utmost importance. While Cryptography only encrypts the data, but as the communication takes place in presence of third parties, so the encrypted text can be decrypted and can easily be destroyed. Steganography, on the other hand, hides the confidential data in some cover source such that the existence of the data is also hidden which do not arouse suspicion regarding the communication taking place between two parties. This paper presents to provide the transfer of secret data embedded into master file (cover-image) to obtain new image (stego-image), which is practically indistinguishable from the original image, so that other than the indeed us
... Show MoreSoftware-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne
... Show More