During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieved lower computational complexity and number of layers, while being more reliable compared with other algorithms applied to recognize face masks. The findings reveal that the model's validation accuracy reaches 97.55% to 98.43% at different learning rates and different values of features vector in the dense layer, which represents a neural network layer that is connected deeply of the CNN proposed model training. Finally, the suggested model enhances recognition performance parameters such as precision, recall, and area under the curve (AUC).
A new features extraction approach is presented based on mathematical form the modify soil ratio (MSR) and skewness for numerous environmental studies. This approach is involved the investigate on the separation of features using frequency band combination by ratio to estimate the quantity of these features, and it is exhibited a particular aspect to determine the shape of features according to the position of brightness values in a digital scenes, especially when the utilizing the skewness. In this research, the marginal probability density function G(MSR) derivation for the MSR index is corrected, that mentioned in several sources including the source (Aim et al.). This index can be used on original input features space for three diffe
... Show MoreNatural Language Processing (NLP) deals with analysing, understanding and generating languages likes human. One of the challenges of NLP is training computers to understand the way of learning and using a language as human. Every training session consists of several types of sentences with different context and linguistic structures. Meaning of a sentence depends on actual meaning of main words with their correct positions. Same word can be used as a noun or adjective or others based on their position. In NLP, Word Embedding is a powerful method which is trained on large collection of texts and encoded general semantic and syntactic information of words. Choosing a right word embedding generates more efficient result than others
... Show MoreIn this article, the research presents a general overview of deep learning-based AVSS (audio-visual source separation) systems. AVSS has achieved exceptional results in a number of areas, including decreasing noise levels, boosting speech recognition, and improving audio quality. The advantages and disadvantages of each deep learning model are discussed throughout the research as it reviews various current experiments on AVSS. The TCD TIMIT dataset (which contains top-notch audio and video recordings created especially for speech recognition tasks) and the Voxceleb dataset (a sizable collection of brief audio-visual clips with human speech) are just a couple of the useful datasets summarized in the paper that can be used to test A
... Show MoreDeep Learning Techniques For Skull Stripping of Brain MR Images
Vehicle detection (VD) plays a very essential role in Intelligent Transportation Systems (ITS) that have been intensively studied within the past years. The need for intelligent facilities expanded because the total number of vehicles is increasing rapidly in urban zones. Trafï¬c monitoring is an important element in the intelligent transportation system, which involves the detection, classification, tracking, and counting of vehicles. One of the key advantages of traffic video detection is that it provides traffic supervisors with the means to decrease congestion and improve highway planning. Vehicle detection in videos combines image processing in real-time with computerized pattern recognition in flexible stages. The real-time pro
... Show MoreFace detection systems are based on the assumption that each individual has a unique face structure and that computerized face matching is possible using facial symmetry. Face recognition technology has been employed for security purposes in many organizations and businesses throughout the world. This research examines the classifications in machine learning approaches using feature extraction for the facial image detection system. Due to its high level of accuracy and speed, the Viola-Jones method is utilized for facial detection using the MUCT database. The LDA feature extraction method is applied as an input to three algorithms of machine learning approaches, which are the J48, OneR, and JRip classifiers. The experiment’s
... Show MoreBackground: Scientific education aims to be inclusive and to improve students learning achievements, through appropriate teaching and learning. Problem Based Learning (PBL) system, a student centered method, started in the second half of the previous century and is expanding progressively, organizes learning around problems and students learn about a subject through the experience of solving these problems.Objectives:To assess the opinions of undergraduate medical students regarding learning outcomes of PBL in small group teaching and to explore their views about the role of tutors and methods of evaluation. Type of the study: A cross-sectional study.Methods: This study was conducted in Kerbala Medical Colleges among second year students
... Show MoreSmishing is a cybercriminal attack targeting mobile Short Message Service (SMS) devices that contains a malicious link, phone number, or email. The attacker intends to use this message to steal the victim's sensitive information, such as passwords, bank account details, and credit cards. One method of combating smishing is to raise awareness and educate users about the various tactics used by SMS phishers. But even so, this method has been criticized for becoming inefficient because smishing tactics are continually evolving. A more promising anti-smishing method is to use machine learning. This paper introduces a number of machine learning algorithms that can be used for detecting smishing. Furthermore, the differences and simil
... Show More