Preferred Language
Articles
/
QBaUVYcBVTCNdQwCGUbS
Effects of Artificial Aging on Some Properties of Room-Temperature-Vulcanized Maxillofacial Silicone Elastomer Modified by Yttrium Oxide Nanoparticles
...Show More Authors

Abstract Background: The daily usage of maxillofacial prostheses causes them to mechanically deteriorate with time. This study was aimed to evaluate the reinforcement of VST50F maxillofacial silicone by using yttrium oxide (Y2O3) nanoparticles (NPs) to resist aging and mechanical deterioration. Materials and Method: Y2O3 NPs (30–45nm) were loaded into VST50F maxillofacial silicone in two weight percentages (1 and 1.5 wt%), which were predetermined in a pilot study as the best rates for improving tear strength with minimum increase in hardness values. A total of 120 specimens were prepared and divided into the control and experimental groups (with 1 and 1.5 wt% Y2O3 addition). Each group included 40 specimens, 10 specimens for each parameter tested (i.e., tear strength, surface roughness, hardness, tensile strength and elongation percentage). Specimens were artificially aged in a weathering chamber for 150 h and then tested. Data were analyzed by ANOVA and Tukey’s honestly significant difference (HSD). Statistical significance was set to P ≤ 0.05. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were also conducted. Results and Discussion: SEM results showed that Y2O3 NPs were distributed well within the silicon matrix. FTIR results indicated that the NPs were physically dispersed within VST50F silicone without chemical interaction. After 150 h of accelerated artificial aging, adding Y2O3 NPs significantly increased the tear strength, hardness, surface roughness, and elongation percentage. Tensile strength increased non significantly. Conclusion: Adding Y2O3 NPs as fillers improved the mechanical properties of artificially aged maxillofacial silicone elastomer. Keywords: maxillofacial silicone, Y2O3, nanoparticles, fillers, artificial aging.

Scopus Crossref
View Publication
Publication Date
Wed Jul 31 2019
Journal Name
Journal Of Engineering
River Water Salinity Impact on Drinking Water Treatment Plant Performance Using Artificial neural network
...Show More Authors

The river water salinity is a major concern in many countries, and salinity can be expressed as total dissolved solids. So, the water salinity impact of the river is one of the major factors effects of water quality. Tigris river water salinity increase with streamline and time due to the decrease in the river flow and dam construction from neighboring countries. The major objective of this research to developed salinity model to study the change of salinity and its impact on the Al-Karkh, Sharq Dijla, Al-Karama, Al-Wathba, Al-Dora, and Al-Wihda water treatment plant along Tigris River in Baghdad city using artificial neural network model (ANN). The parameter used in a model built is (Turbidity, Ec, T.s, S.s, and TDS in)

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Sat Sep 20 2025
Journal Name
Journal Of Baghdad College Of Dentistry
Effect of surface treatments and thermocycling on shear bond strength of various artificial teeth with different denture base materials
...Show More Authors

Background: Separation and deboning of artificial teeth from denture bases present a major clinical and labortory problem which affect both the patient and the dentist. The optimal bond strength of artificial teeth with denture base reinforced with nanofillers and flexible denture bases and the effect of thermo cycling should be evaluated. This study was conducted to evaluate and compare the shear bond strength of artificial teeth (acrylic and porcelain) with denture bases reinforced by 5% Zirconium oxide nanofillers and flexible bases under the effect of different surface treatments and thermo cycling and comparing the results with conventional water bath cured denture bases. Material and methods: Two types of artificial teeth; acrylic and

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 15 2022
Journal Name
Journal Of Baghdad College Of Dentistry
Effect of Resin Infiltration and Microabrasion on the Microhardness of the Artificial White Spot Lesions (An in Vitro Study)
...Show More Authors

Crossref (5)
Crossref
Publication Date
Tue Mar 15 2022
Journal Name
Journal Of Baghdad College Of Dentistry
Effect of Resin Infiltration and Microabrasion on the Microhardness of the Artificial White Spot Lesions (An in Vitro Study)
...Show More Authors

Background: White spot lesion is the first visible sign of dental caries that is characterized by demineralized lesion underneath an intact surface. Several studies demonstrated that they could be treated using noninvasive techniques like the use of fluoride or casein phospho-peptide and amorphous calcium phosphate. Improvement in aesthetic outcomes by covering the demineralized enamel is one of the advantages of the use of resin infiltration and opal-ustre microabrasion, which are two new techniques that had been used for treatment of white spot lesion. The purpose of this study was to evaluate the impact of resin infiltration and microabrasion in the microhardness of the artificial white spot lesions at various depths. Material and method

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (5)
Scopus Crossref
Publication Date
Tue Jan 11 2022
Journal Name
3rd International Scientific Conference Of Alkafeel University (iscku 2021)
Elimination of the broadening in X-ray diffraction lines profile for nanoparticles by using the analysis of diffraction lines method
...Show More Authors

In this research, the results of the Integral breadth method were used to analyze the X-ray lines to determine the crystallite size and lattice strain of the zirconium oxide nanoparticles and the value of the crystal size was equal to (8.2nm) and the lattice strain (0.001955), and then the results were compared with three other methods, which are the Scherer and Scherer dynamical diffraction theory and two formulas of the Scherer and Wilson method.the results were as followsScherer crystallite size(7.4nm)and lattice strain(0.011968),Schererdynamic method crystallite size(7.5 nm),Scherrer and Wilson methodcrystallite size( 8.5nm) and lattice strain( 0.001919).And using another formula for Schearer and Wilson methodwe obtain the size of the c

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
FILTRATION MODELING USING ARTIFICIAL NEURAL NETWORK (ANN)
...Show More Authors

In this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, wi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
International Journal Of Mathematics Trends And Technology (ijmtt)
Some Statistical Properties of the Solutions of a System of two dimensional Integral Equations contains Beta distribution
...Show More Authors

Publication Date
Mon Mar 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Experimental Study of the Influence of Nanoparticles Additive to Diesel Fuel on the Emission Characteristics
...Show More Authors

The present experimental work is conducted to examine the influence of adding Alumina (Al2O3) nanoparticles and Titanium oxide (TiO2) nanoparticles each alone to diesel fuel on the characteristic of the emissions. The size of both Alumina and Titanium oxide nanoparticles which have been added to diesel fuel to obtain nano-fuel is about 20 nm and 25 nm respectively. Three doses of (Al2O3) and (TiO2) were prepared (25, 50, and 100) ppm. The nanoparticles mixed with gas oil fuel by mechanical homogenous (manual electrical mixer) and ultrasonic processor. The study reveals that the adding of Aluminum oxide (Al2O3) and Titanium oxide (TiO2) to g

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
DYNAMIC MODELING FOR DISCRETE SURVIVAL DATA BY USING ARTIFICIAL NEURAL NETWORKS AND ITERATIVELY WEIGHTED KALMAN FILTER SMOOTHING WITH COMPARISON
...Show More Authors

Survival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re

... Show More
Preview PDF
Scopus (1)
Scopus
Publication Date
Tue Dec 12 2017
Journal Name
Al-khwarizmi Engineering Journal
Model Reference Adaptive Control based on a Self-Recurrent Wavelet Neural Network Utilizing Micro Artificial Immune Systems
...Show More Authors

Abstract 

This paper presents an intelligent model reference adaptive control (MRAC) utilizing a self-recurrent wavelet neural network (SRWNN) to control nonlinear systems. The proposed SRWNN is an improved version of a previously reported wavelet neural network (WNN). In particular, this improvement was achieved by adopting two modifications to the original WNN structure. These modifications include, firstly, the utilization of a specific initialization phase to improve the convergence to the optimal weight values, and secondly, the inclusion of self-feedback weights to the wavelons of the wavelet layer. Furthermore, an on-line training procedure was proposed to enhance the control per

... Show More
View Publication Preview PDF
Crossref (1)
Crossref