Preferred Language
Articles
/
Phbbj4oBVTCNdQwCC5_w
Detecting dry eye from ocular surface videos based on deep learning
...Show More Authors

Scopus Clarivate Crossref
View Publication
Publication Date
Wed Apr 19 2017
Journal Name
Iraqi Dental Journal
Matching the Iris Color of Ocular Prosthesis Using an Eye Contact Lens: New Technique
...Show More Authors

View Publication
Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Indoor/Outdoor Deep Learning Based Image Classification for Object Recognition Applications
...Show More Authors

With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sun Dec 25 2022
Journal Name
International Journal Of Drug Delivery Technology
Design and Evaluation of Solid Lipid Nanoparticle Eye Drops Containing VRN for Ocular Drug Delivery
...Show More Authors

As a well-known oral and intravenous antifungal, voriconazole (VRN) has an extensive history of usage in the medical field. Solid lipid nanoparticles (SLNs) have been produced to treat ocular fungal keratitis in the eye. A 32Box-behnken design was used to produce a variety of new formulas for hot-melt extrusion. The SLNs were evaluated by entrapment efficiency (EE percent), particle size (PS), polydispersity index (PDI), and zeta potential (ZP). A series of in-vitro and in-vivo studies were carried out on the new formula. The produced vesicles’ EE, PS, PDI, and ZP values were all good. SLNs eye drops were numerically adjusted to include carbopol, a stabilizer, lipids, and a surfactant, among other substances. ZP of -36.5 ± 0.20 m

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Mon Nov 21 2022
Journal Name
Sensors
Deep Learning-Based Computer-Aided Diagnosis (CAD): Applications for Medical Image Datasets
...Show More Authors

Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes

... Show More
View Publication
Scopus (22)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Wed Mar 01 2023
Journal Name
Iaes International Journal Of Artificial Intelligence (ij-ai)
Design and implementation monitoring robotic system based on you only look once model using deep learning technique
...Show More Authors

<span lang="EN-US">The need for robotics systems has become an urgent necessity in various fields, especially in video surveillance and live broadcasting systems. The main goal of this work is to design and implement a rover robotic monitoring system based on raspberry pi 4 model B to control this overall system and display a live video by using a webcam (USB camera) as well as using you only look once algorithm-version five (YOLOv5) to detect, recognize and display objects in real-time. This deep learning algorithm is highly accurate and fast and is implemented by Python, OpenCV, PyTorch codes and the Context Object Detection Task (COCO) 2020 dataset. This robot can move in all directions and in different places especially in

... Show More
View Publication
Scopus (6)
Crossref (2)
Scopus Crossref
Publication Date
Sun Feb 27 2022
Journal Name
Iraqi Journal Of Science
Efficient Hybrid DCT-Wiener Algorithm Based Deep Learning Approach For Semantic Shape Segmentation
...Show More Authors

    Semantic segmentation is effective in numerous object classification tasks such as autonomous vehicles and scene understanding. With the advent in the deep learning domain, lots of efforts are seen in applying deep learning algorithms for semantic segmentation. Most of the algorithms gain the required accuracy while compromising on their storage and computational requirements. The work showcases the implementation of Convolutional Neural Network (CNN) using Discrete Cosine Transform (DCT), where DCT exhibit exceptional energy compaction properties. The proposed Adaptive Weight Wiener Filter (AWWF) rearranges the DCT coefficients by truncating the high frequency coefficients. AWWF-DCT model reinstate the convolutional l

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review
...Show More Authors

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Detecting Textual Propaganda Using Machine Learning Techniques
...Show More Authors

Social Networking has dominated the whole world by providing a platform of information dissemination. Usually people share information without knowing its truthfulness. Nowadays Social Networks are used for gaining influence in many fields like in elections, advertisements etc. It is not surprising that social media has become a weapon for manipulating sentiments by spreading disinformation.  Propaganda is one of the systematic and deliberate attempts used for influencing people for the political, religious gains. In this research paper, efforts were made to classify Propagandist text from Non-Propagandist text using supervised machine learning algorithms. Data was collected from the news sources from July 2018-August 2018. After annota

... Show More
View Publication Preview PDF
Scopus (18)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Thu Aug 27 2020
Journal Name
European Journal Of Ophthalmology
Comparison of corneal epithelial thickness profile in dry eye patients, keratoconus suspect, and healthy eyes
...Show More Authors
Purpose:

To compare the corneal epithelial thickness profile in patients with dry eyes and keratoconus suspect with normal healthy eyes.

Methods:

The study involved 120 eyes with an age range from 19 to 30 years. Forty eyes had normal corneal topography and no dry eyes. Forty eyes had dry eyes but had normal corneal topography. The last 40 eyes were keratoconus suspect and had no symptoms or signs of dry eyes.

Results:

Central epithelial thickness was not different statistically for all eyes. ( p-value: 0.1). The superior epithelial thickness was 53.5 µm ±3.1 in the control

... Show More
View Publication
Scopus (16)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Diabetes Diagnosis Using Deep Learning
...Show More Authors

     Hyperglycemia is a complication of diabetes (high blood sugar). This condition causes biochemical alterations in the cells of the body, which may lead to structural and functional problems throughout the body, including the eye. Diabetes retinopathy (DR) is a type of retinal degeneration induced by long-term diabetes that may lead to blindness. propose our deep learning method for the early detection of retinopathy using an efficient net B1 model and using the APTOS 2019 dataset. we used the Gaussian filter as one of the most significant image-processing algorithms. It recognizes edges in the dataset and reduces superfluous noise. We will enlarge the retina picture to 224×224 (the Efficient Net B1 standard) and utilize data aug

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref