The adopted accelerated curing methods in the experimental work are 55ºC and 82ºC according to British standard methods. The concrete mix with the characteristics compressive strength of 35MPa is design according to the ACI 211.1, the mix proportion is (1:2.65:3.82) for cement, fine and coarse aggregate, respectively. The concrete reinforced with different volume fraction (0.25, 0.5 and 0.75)% of glass, carbon and polypropylene fibers. The experimental results showed that the accelerated curing method using 82ºC gives a compressive strength higher than 55ºC method for all concrete mixes. In addition, the fiber reinforced concrete with 0.75% gives the maximum compressive strength, flexural and splitting tensile strength for all types of
... Show MoreImproving the accuracy of load-deformation behavior, failure mode, and ultimate load capacity for reinforced concrete members subjected to in-plane loadings such as corbels, wall to foundation connections and panels need shear strength behavior to be included. Shear design in reinforced concrete structures depends on crack width, crack slippage and roughness of the surface of cracks.
This paper illustrates results of an experimental investigation conducted to investigate the direct shear strength of fiber normal strength concrete (NSC) and reactive powder concrete (RPC). The tests were performed along a pre-selected shear plane in concrete members named push-off specimens. The effectiveness of concrete compressiv
... Show MoreEncasing glass fiber reinforced polymer (GFRP) beam with reinforced concrete (RC) improves stability, prevents buckling of the web, and enhances the fire resistance efficiency. This paper provides experimental and numerical investigations on the flexural performance of RC specimens composite with encased pultruded GFRP I-sections. The effect of using shear studs to improve the composite interaction between the GFRP beam and concrete was explored. Three specimens were tested under three-point loading. The deformations, strains in the GFRP beams, and slippages between the GFRP beams and concrete were recorded. The embedded GFRP beam enhanced the peak loads by 65% and 51% for the composite specimens with and without shear connectors,
... Show MoreMost studies on deep beams have been made with reinforced concrete deep beams, only a few studies investigate the response of prestressed deep beams, while, to the best of our knowledge, there is not a study that investigates the response of full scale (T-section) prestressed deep beams with large web openings. An experimental and numerical study was conducted in order to investigate the shear strength of ordinary reinforced and partially prestressed full scale (T-section) deep beams that contain large web openings in order to investigate the prestressing existence effects on the deep beam responses and to better understand the effects of prestressing locations and opening depth to beam depth ratio on the deep beam performance and b
... Show MoreThe residual limb within the prosthesis, is often subjected to tensile or fatigue stress with varying temperatures. The fatigue stress and temperatures difference which faced by amputee during his daily activities will produces an environmental media for growth of fungi and bacteria in addition to the damage that occurs in the prosthesis which minimizingthe life of the prosthetic limb and causing disconfirm feeling for the amputee.
In this paper, a mechanical and thermal properties of composite materials prosthetic socket made of different lamination for perlon/fiber glass/perlon, are calculated by using tesile test device under varying temperatures ( from 20oC to 60oC), also in this paper a device for measuring rotational bendin
... Show More
Experimental investigation of the influence of inserting the metal foam to the solar chimney to induce natural ventilation are described and analyzed in this work. To carry out the experimental test, two identical solar chimneys (without insertion of metal foam and with insertion of metal foam) are designed and placed facing south with dimensions of length× width× air gap (2 m× 1 m× 0.2 m). Four incline angles are tested (20o,30o,45o,60o) for each chimney in Baghdad climate condition (33.3o latitude, 44.4o longitude) on October, November, December 2018. The solar chimney performance is investigated by experimentally recording absorber pl
... Show MoreStraight tendons in pretensioned members can cause high-tensile stresses in the concrete extreme fibers at end sections because of the absence of the bending stresses due to self-weight and superimposed loads and the dominance of the moment due to prestressing force alone. Accordingly, the concrete tensile stresses at the ends of a member prestressed with straight tendons may limit the service load capacity of the member. It is therefore important to establish limiting zone in the concrete section within which the prestressing force can be applied without causing tension in the extreme concrete fibers. Two practical methods are available to reduce the stresses at the end sections due to the prestressing force. The first method based
... Show MoreThis study aims to investigate the adequacy of composite cellular beams with lightweight reinforced concrete deck slab as a structural unit for harmonic loaded buildings. The experimental program involved three fixed-ends supported beams throughout 2140 mm. Three concrete types were included: Normal Weight Concrete (NWC), Lightweight Aggregate Concrete (LWAC), and Lightweight Fiber Reinforced Aggregate Concrete (LWACF). The considered frequencies were (5, 10, 15, 20, 25, and 30) Hz. It was indicated that the harmonic load caused a significant influence on LWAC response (64% greater than NWC) and lattice cracks were observed, especially at 30 Hz. As for LWACF slab, no cracks appeared,