Preferred Language
Articles
/
PRfzfY8BVTCNdQwC2Hpw
J-Small Semiprime Submodules
Abstract<p>Let <italic>R</italic> be a commutative ring with identity and <italic>Y</italic> be an unitary <italic>R</italic>-module. We say a non-zero submodule <italic>s</italic> of <italic>Y</italic> is a <italic>J –</italic> small semiprime if and only if for whenever <italic>i</italic> ∈ <italic>R, y ∈ Y,(Y)</italic> is small in <italic>Y</italic> and <italic>i<sup>2</sup>y</italic> ∈ <italic>S</italic> + <italic>Rad (Y)</italic> implies <italic>iy</italic> ∈ <italic>S.</italic> In this paper, we investigate some properties and characterizations of these class of submodules</p>
Scopus Crossref
Publication Date
Sun Sep 04 2016
Journal Name
Baghdad Science Journal
Some Results on Weak Essential Submodules

Throughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.

View Publication Preview PDF
Crossref
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Pure Maximal Submodules and Related Concepts

      In this work we discuss the concept of pure-maximal denoted by (Pr-maximal) submodules as a generalization to the type of R- maximal submodule, where a proper submodule  of an R-module  is called Pr- maximal if  ,for any submodule  of W is a pure submodule of W, We offer some properties of a Pr-maximal submodules, and we give Definition of the concept, near-maximal, a proper submodule  

 of an R-module  is named near (N-maximal) whensoever  is pure submodule of  such that  then K=.Al so we offer the concept Pr-module, An R-module W is named Pr-module, if every proper submodule of  is Pr-maximal. A ring  is named Pr-ring if whole proper ideal of  is a Pr-maximal ideal, we offer the concept pure local (Pr-loc

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Sep 04 2016
Journal Name
Baghdad Science Journal
Some Results on Weak Essential Submodules

Throughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.

View Publication Preview PDF
Crossref
Publication Date
Tue Nov 13 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
For Some Results of Semisecond Submodules

  Let â„› be a commutative ring with unity and let ℬ be a unitary R-module. Let ℵ be a proper submodule of ℬ, ℵ is called semisecond submodule if for any r∈ℛ, r≠0, n∈Z+, either rnℵ=0 or rnℵ=rℵ.

In this work, we introduce the concept of semisecond submodule and confer numerous properties concerning with this notion. Also we study semisecond modules as a popularization of second modules, where an ℛ-module ℬ is called semisecond, if ℬ is semisecond submodul of ℬ.

View Publication Preview PDF
Crossref
Publication Date
Tue Nov 30 2021
Journal Name
Iraqi Journal Of Science
Large-Coessential and Large-Coclosed Submodules

The goal of this research is to introduce the concepts of Large-coessential submodule and Large-coclosed submodule, for which some properties are also considered. Let M  be an R-module and K, N are submodules of M such that , then K is said to be Large-coessential submodule, if . A submodule N of M is called Large-coclosed submodule, if K is Large-coessential submodule of N in M, for some submodule K of N, implies that  .

Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Sun Sep 29 2019
Journal Name
Iraqi Journal Of Science
Dependent Element and Free Actions of Centralizer and Reverse Centralizer on Prime and Semiprime Semirings

     This paper develops the work of Mary Florence et.al. on centralizer of semiprime semirings and presents reverse centralizer of semirings with several propositions and lemmas. Also introduces the notion of dependent element and free actions on semirings with some results of free action of centralizer and reverse centralizer on semiprime semirings and some another mappings.

View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
Semi-group Ideals on prime and semiprime Γ-Near - Rings with Γ- (λ,δ) – derivations
Abstract<p>Let h is Γ<sub>−(λ,δ) –</sub> derivation on prime Γ<sub>−</sub>near-ring G and K be a nonzero semi-group ideal of G and δ(K) = K, then the purpose of this paper is to prove the following :- (a) If λ is onto on G, λ(K) = K, λ(0) = 0 and h acts like Γ<sub>−</sub>hom. or acts like anti–Γ<sub>−</sub>hom. on K, then h(K) = {0}.(b) If h + h is an additive on K, then (G, +) is abelian.</p>
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
On Quasi-Small Prime Modules
Abstract<p>Let R be a commutative ring with identity, and W be a unital (left) R-module. In this paper we introduce and study the concept of a quasi-small prime modules as generalization of small prime modules.</p>
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Wed Feb 22 2023
Journal Name
Iraqi Journal Of Science
Small Pointwise M-Projective Modules

Let R be a ring and let M be a left R-module. In this paper introduce a small pointwise M-projective module as generalization of small M- projective module, also introduce the notation of small pointwise projective cover and study their basic properties.
.

View Publication Preview PDF
Publication Date
Thu Jul 01 2021
Journal Name
Journal Of Physics: Conference Series
T-Small Quasi-Dedekind modules
Abstract<p>Let Q be a left Module over a ring with identity ℝ. In this paper, we introduced the concept of T-small Quasi-Dedekind Modules as follows, An R-module Q is T-small quasi-Dedekind Module if, <inline-formula> <tex-math><?CDATA $\forall \,w\,\in En{d}_{R}(Q),\,w\ne 0$?></tex-math> <math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mrow> <mo>∀</mo> <mspace width="0.25em"></mspace> <mi>w</mi> <mspace width="0.25em"></mspace> <mo></mo></mrow></math></inline-formula></p> ... Show More
View Publication
Scopus Crossref