Preferred Language
Articles
/
PRfzfY8BVTCNdQwC2Hpw
J-Small Semiprime Submodules
Abstract<p>Let <italic>R</italic> be a commutative ring with identity and <italic>Y</italic> be an unitary <italic>R</italic>-module. We say a non-zero submodule <italic>s</italic> of <italic>Y</italic> is a <italic>J –</italic> small semiprime if and only if for whenever <italic>i</italic> ∈ <italic>R, y ∈ Y,(Y)</italic> is small in <italic>Y</italic> and <italic>i<sup>2</sup>y</italic> ∈ <italic>S</italic> + <italic>Rad (Y)</italic> implies <italic>iy</italic> ∈ <italic>S.</italic> In this paper, we investigate some properties and characterizations of these class of submodules</p>
Scopus Crossref
Publication Date
Mon Oct 28 2019
Journal Name
Iraqi Journal Of Science
Generalized Strong Commutativity Preserving Centralizers of Semiprime Γ- Rings

     In this paper, we introduce the concept of generalized strong commutativity (Cocommutativity) preserving right centralizers on a subset of a Γ-ring. And we generalize some results of a classical ring to a gamma ring.

Scopus (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Dec 18 2019
Journal Name
Baghdad Science Journal
Orthogonal Symmetric Higher bi-Derivations on Semiprime Г-Rings

   Let M is a Г-ring. In this paper the concept of orthogonal symmetric higher bi-derivations on semiprime Г-ring is presented and studied and the relations of two symmetric higher bi-derivations on Г-ring are introduced.

Crossref (1)
Clarivate Crossref
View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Italian Journal Of Pure And Applied Mathematics
Co-small monoform modules

he concept of small monoform module was introduced by Hadi and Marhun, where a module U is called small monoform if for each non-zero submodule V of U and for every non-zero homomorphism f ∈ Hom R (V, U), implies that ker f is small submodule of V. In this paper the author dualizes this concept; she calls it co-small monoform module. Many fundamental properties of co-small monoform module are given. Partial characterization of co-small monoform module is established. Also, the author dualizes the concept of small quasi-Dedekind modules which given by Hadi and Ghawi. She show that co-small monoform is contained properly in the class of the dual of small quasi-Dedekind modules. Furthermore, some subclasses of co-small monoform are investiga

... Show More
Scopus
View Publication Preview PDF
Publication Date
Wed Mar 28 2018
Journal Name
Iraqi Journal Of Science
Essential-small Projective Modules

In this paper, we introduce the concept of e-small Projective modules as a generlization of Projective modules.

View Publication Preview PDF
Publication Date
Fri Apr 30 2021
Journal Name
Iraqi Journal Of Science
On Small Primary Modules

Let  be a commutative ring with an identity and be a unitary -module. We say that a non-zero submodule  of  is  primary if for each with en either or  and an -module  is a small primary if   =  for each proper submodule  small in. We provided and demonstrated some of the characterizations and features of these types of submodules (modules).  

Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Jan 02 2007
Journal Name
Journal Of The Faculty Of Medicine Baghdad
mechanical small bowel obstruction

a prospective study conducted at baghdad teaching hospital

Crossref
View Publication Preview PDF
Publication Date
Wed Mar 27 2019
Journal Name
Iraqi Journal Of Science
Properties of J- Regular modules

The present study introduces the concept of J-pure submodules as a generalization of pure submodules. We  study some of its basic  properties  and  by using this concept we  define the class of  J-regular modules,  where an R-module  M is called  J-regular module if every submodule of M is J-pure submodule. Many results about this concept are proved

View Publication Preview PDF
Publication Date
Wed May 25 2022
Journal Name
Iraqi Journal Of Science
F-J-semi Regular Modules

      Let  be a ring with identity and let  be a left R-module. If is  a proper submodule of  and  ,  is called --semi regular element in  , If there exists a decoposition  such that  is projective submodule of  and  . The aim of this paper is to introduce properties of F-J-semi regular module. In particular, its characterizations are given. Furthermore, we introduce the concepts of Jacobson hollow semi regular module and --semiregular module. Finally, many results of Jacobson hollow semi regular module and --semiregular module are presented.

Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Mar 15 2020
Journal Name
Iraqi Journal Of Science
On Semiannahilator Supplement Submodules

Let R be associative; ring; with an identity and let D be unitary left R- module; . In this work we present semiannihilator; supplement submodule as a generalization of R-a- supplement submodule, Let U and V be submodules of an R-module D if D=U+V and whenever Y≤ V and D=U+Y, then annY≪R;. We also introduce the the concept of semiannihilator -supplemented ;modules and semiannihilator weak; supplemented modules, and we give some basic properties of this conseptes

Publication Date
Wed May 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Almost Bounded Submodules

        Let R be a commutative ring with identity, and let M be a unitary R-module. We introduce a concept of almost bounded submodules as follows: A submodule N of an R-module M is called an almost bounded submodule if there exists xÃŽM, xÏN such that annR(N)=annR(x).

        In this paper, some properties of almost bounded submodules are given. Also, various basic results about almost bounded submodules are considered.

        Moreover, some relations between almost bounded submodules and other types of modules are considered.

 

View Publication Preview PDF