Preferred Language
Articles
/
PRe84Y0BVTCNdQwC6iiu
P-Rational Submodules and Certain Types of Polyform Modules
...Show More Authors

The main objective of this thesis is to study new concepts (up to our knowledge) which are P-rational submodules, P-polyform and fully polyform modules. We studied a special type of rational submodule, called the P-rational submodule. A submodule N of an R-module M is called P-rational (Simply, N≤_prM), if N is pure and Hom_R (M/N,E(M))=0 where E(M) is the injective hull of M. Many properties of the P-rational submodules were investigated, and various characteristics were given and discussed that are analogous to the results which are known in the concept of the rational submodule. We used a P-rational submodule to define a P-polyform module which is contained properly in the polyform module. An R-module M is called P-polyform if every essential submodule of M is P-rational in M. We study this kind of module in some detail and introduced some characterizations of the P-polyform module and its relationships with some other modules. The third kind of module in this thesis is called fully polyform module, and it is contained in the class of polyform module. A module M is said to be fully polyform, if every P-essential submodule of M is rational in M, that is Hom_R(M/N, E(M))=0 for every P-essential submodule N of M. In fact, the class of fully polyform modules lies between polyform modules and essentially quasi-Dedekind modules. The main characteristics of fully polyform modules were investigated, and some characterizations of these types of modules were established. Furthermore, the relationships between this class and other related modules were examined.

Publication Date
Mon Aug 01 2022
Journal Name
Journal Of Physics: Conference Series
Approximately Regular Rings and Approximately Regular Modules
...Show More Authors

Abstract In this work we introduce the concept of approximately regular ring as generalizations of regular ring, and the sense of a Z- approximately regular module as generalizations of Z- regular module. We give many result about this concept.

Scopus Crossref
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
On Large-Lifting and Large-Supplemented Modules
...Show More Authors

      In this paper, we introduce the concepts of Large-lifting and Large-supplemented modules as a generalization of lifting and supplemented modules.  We also give some results and properties of this new kind of modules.

Scopus (1)
Scopus Crossref
Publication Date
Thu Jul 01 2021
Journal Name
Journal Of Physics: Conference Series
SOME RESULTS ON T_PURE SUBMODULES RELATED TO SUBMODULE
...Show More Authors
Abstract<p>The aim of this work is studying many concepts of a pure submodule related to sub-module L and introducing the two concepts, T_pure submodule related to submodule and the crossing property of T_pure related to submodule. Another characterizations and study some properties of this concept.</p>
View Publication
Scopus Crossref
Publication Date
Sun Dec 06 2015
Journal Name
Baghdad Science Journal
Some Results on Pure Submodules Relative to Submodule
...Show More Authors

Let R be a commutative ring with identity 1 and M be a unitary left R-module. A submodule N of an R-module M is said to be pure relative to submodule T of M (Simply T-pure) if for each ideal A of R, N?AM=AN+T?(N?AM). In this paper, the properties of the following concepts were studied: Pure essential submodules relative to submodule T of M (Simply T-pure essential),Pure closed submodules relative to submodule T of M (Simply T-pure closed) and relative pure complement submodule relative to submodule T of M (Simply T-pure complement) and T-purely extending. We prove that; Let M be a T-purely extending module and let N be a T-pure submodule of M. If M has the T-PIP, then N is T-purely extending.

View Publication Preview PDF
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Italian Journal Of Pure And Applied Mathematics
Co-small monoform modules
...Show More Authors

he concept of small monoform module was introduced by Hadi and Marhun, where a module U is called small monoform if for each non-zero submodule V of U and for every non-zero homomorphism f ∈ Hom R (V, U), implies that ker f is small submodule of V. In this paper the author dualizes this concept; she calls it co-small monoform module. Many fundamental properties of co-small monoform module are given. Partial characterization of co-small monoform module is established. Also, the author dualizes the concept of small quasi-Dedekind modules which given by Hadi and Ghawi. She show that co-small monoform is contained properly in the class of the dual of small quasi-Dedekind modules. Furthermore, some subclasses of co-small monoform are investiga

... Show More
View Publication Preview PDF
Scopus
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
On J–Lifting Modules
...Show More Authors
Abstract<p>Let R be a ring with identity and M is a unitary left R–module. M is called J–lifting module if for every submodule N of M, there exists a submodule K of N such that <inline-formula> <tex-math><?CDATA ${\rm{M}} = {\rm{K}} \oplus \mathop {\rm{K}}\limits^\prime,\>\mathop {\rm{K}}\limits^\prime \subseteq {\rm{M}}$?></tex-math> <math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block" overflow="scroll"> <mrow> <mi mathvariant="normal">M</mi> <mo>=</mo> <mi mathvariant="normal">K</mi></mrow></math></inline-formula></p> ... Show More
View Publication
Scopus (4)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Int. J. Nonlinear Anal. Appl.
Cofinitely @Dj-supplemented modules
...Show More Authors

Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Early Childhood Special Education (int-jecse)
(𝝁∗- Essential Lifting Modules)
...Show More Authors

Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
J-semi regular modules
...Show More Authors
Abstract<p>Let <italic>R</italic> be a ring with identity and let <italic>M</italic> be a left R-module. <italic>M</italic> is called J-semiregular module if every cyclic submodule of <italic>M</italic> is J-lying over a projective summand of <italic>M</italic>, The aim of this paper is to introduce properties of J-semiregular module Especially, we give characterizations of J-semiregular module. On the other hand, the notion of J-semi hollow modules is studied as a generalization of semi hollow modules, finally <italic>F</italic>-J-semiregular modules is studied as a generalization of <italic>F</italic>-semiregular modules.</p> ... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sun Dec 05 2010
Journal Name
Baghdad Science Journal
ON M- Hollow modules
...Show More Authors

Let R be associative ring with identity and M is a non- zero unitary left module over R. M is called M- hollow if every maximal submodule of M is small submodule of M. In this paper we study the properties of this kind of modules.

View Publication Preview PDF
Crossref