Voice Activity Detection (VAD) is considered as an important pre-processing step in speech processing systems such as speech enhancement, speech recognition, gender and age identification. VAD helps in reducing the time required to process speech data and to improve final system accuracy by focusing the work on the voiced part of the speech. An automatic technique for VAD using Fuzzy-Neuro technique (FN-AVAD) is presented in this paper. The aim of this work is to alleviate the problem of choosing the best threshold value in traditional VAD methods and achieves automaticity by combining fuzzy clustering and machine learning techniques. Four features are extracted from each speech segment, which are short term energy, zero-crossing rate, autocorrelation, and log energy. A modified version of fuzzy C-Means is then used to cluster speech segments into three clusters; two clusters for voice and one for unvoiced. After that, three feed forward neural networks are trained to adjust their weights, in which each network represents one cluster. To make the final decision regarding the class type of a given speech segment, the membership degrees of this segment in all clusters along with neural networks' decisions are given to a defuzzification step which finally gives the class type of that segment. The proposed FN-AVAD is tested on the public multimodal emotion database, Surrey AudioVisual Expressed Emotion (SAVEE), and the error rate was 2.08%. The achieved results are comparable to the results achieved by the current published works in the literature.
Community detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem. In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a
... Show MoreThe research aims to identify the importance of using analytical procedures in the detection of creative accounting practices. To achieve this goal, (100) questionnaires were prepared and distributed to the auditors in the Federal Financial Supervision Bureau and the authorized auditors' offices and practitioners of the auditing profession in Iraq. For the purpose of testing the research hypothesis and analyzing data, some appropriate statistical methods have been used and the use of the statistical program (SPSS) to analyze the data. The results of the research showed that the analytical procedures and tests applied by the auditor have a role in revealing and limiting creative accounting practices and methods and that auditors u
... Show MoreIn this study, a genetic algorithm (GA) is used to detect damage in curved beam model, stiffness as well as mass matrices of the curved beam elements is formulated using Hamilton's principle. Each node of the curved beam element possesses seven degrees of freedom including the warping degree of freedom. The curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam theory. The identification of damage is formulated as an optimization problem, binary and continuous genetic algorithms
(BGA, CGA) are used to detect and locate the damage using two objective functions (change in natural frequencies, Modal Assurance Criterion MAC). The results show the objective function based on change in natural frequency i
The purpose of this paper is to shed light on the concept of fuzzy logic ,its application in linguistics ,especially in language teaching and the fuzziness of some lexical items in English.
Fuzziness means that the semantic boundaries of some lexical items are indefinite and ideterminate.Fuzzy logic provides a very precise approach for dealing with this indeterminacy and uncertainty which grows (among other reasons) out of human behavior and the effect of society.
The concept of fuzzy logic has emerged in the development of the theory of fuzzy set by Lotfi Zadeh(a professor of computer science at the university of California) in 1965.It can be thought of as the application side of the fuzzy set theory. In linguistics, few scholars
In this work the design and application of a fuzzy logic controller to DC-servomotor is investigated. The proposed strategy is intended to improve the performance of the original control system by use of a fuzzy logic controller (FLC) as the motor load changes. Computer simulation demonstrates that FLC is effective in position control of a DC-servomotor comparing with conventional one.
The aim of this paper is to introduce the notion of hyper fuzzy AT-ideals on hyper AT-algebra. Also, hyper fuzzy AT-subalgebras and fuzzy hyper AT-ideal of hyper AT-algebras are studied. We study on the fuzzy theory of hyper AT-subalgebras and hyper AT-ideal of hyper AT-algebras. Furthermore, the fuzzy set theory of the (weak, strong, s-weak) hyper fuzzy ATideals in hyper AT-algebras are applied and the relations among them are obtained.
In the present paper, discuss the concept of fuzzy topological spectrum of a bounded commutative KU-algebra and study some of the characteristics of this topology. Also, we show that the fuzzy topological spectrum of this structure is compact and T1 -space.