Preferred Language
Articles
/
Oxbt4osBVTCNdQwCpOO1
Automatic voice activity detection using fuzzy-neuro classifier
...Show More Authors

Voice Activity Detection (VAD) is considered as an important pre-processing step in speech processing systems such as speech enhancement, speech recognition, gender and age identification. VAD helps in reducing the time required to process speech data and to improve final system accuracy by focusing the work on the voiced part of the speech. An automatic technique for VAD using Fuzzy-Neuro technique (FN-AVAD) is presented in this paper. The aim of this work is to alleviate the problem of choosing the best threshold value in traditional VAD methods and achieves automaticity by combining fuzzy clustering and machine learning techniques. Four features are extracted from each speech segment, which are short term energy, zero-crossing rate, autocorrelation, and log energy. A modified version of fuzzy C-Means is then used to cluster speech segments into three clusters; two clusters for voice and one for unvoiced. After that, three feed forward neural networks are trained to adjust their weights, in which each network represents one cluster. To make the final decision regarding the class type of a given speech segment, the membership degrees of this segment in all clusters along with neural networks' decisions are given to a defuzzification step which finally gives the class type of that segment. The proposed FN-AVAD is tested on the public multimodal emotion database, Surrey AudioVisual Expressed Emotion (SAVEE), and the error rate was 2.08%. The achieved results are comparable to the results achieved by the current published works in the literature.

Scopus
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Journal Of Mechanical Science And Technology
Damage detection in glass/epoxy composite structure using 8–12 GHz X-band
...Show More Authors

View Publication
Scopus (7)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
A Prevalence study of Entamoeba spp. in Basrah Province using Different Detection Methods
...Show More Authors

This study aims to determine the prevalence of Entamoeba histolytica, Entamoeba dispar and
Entamoeba moshkovskii by three methods of diagnosis (microscopic examination, cultivation and PCR) that
were compared to obtain an accurate diagnosis of Entamoeba spp. during amoebiasis. Total (n=150) stool
samples related to patients were (n = 100) and healthy controls (n= 50). Clinically diagnosed stool samples
(n=100) were collected from patients attending the consultant clinics of different hospitals in Basrah during
the period from January 2018 to January 2019. The results showed that 60% of collected samples were
positive in a direct microscopic examination. All samples were cultivated on different media; the Bra

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sat Sep 01 2018
Journal Name
2018 15th European Radar Conference (eurad)
Delamination Detection in Glass-Fibre Reinforced Polymer (GFRP) Using Microwave Time Domain Reflectometry
...Show More Authors

View Publication
Scopus (16)
Crossref (14)
Scopus Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Iraqi Journal Of Science
Land cover change detection of Baghdad city using multi-spectral remote sensing imagery
...Show More Authors

Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
Community Detection in Modular Complex Networks Using an Improved Particle Swarm Optimization Algorithm
...Show More Authors

     Community detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem.  In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of The Iraqi University
Exclusion optimal portfolio from outlier by using fuzzy c-means clustering - analytical research at the Iraqi Stock Exchange
...Show More Authors

This research aims to solve the problem of selection using clustering algorithm, in this research optimal portfolio is formation using the single index model, and the real data are consisting from the stocks Iraqi Stock Exchange in the period 1/1/2007 to 31/12/2019. because the data series have missing values ,we used the two-stage missing value compensation method, the knowledge gap was inability the portfolio models to reduce The estimation error , inaccuracy of the cut-off rate and the Treynor ratio combine stocks into the portfolio that caused to decline in their performance, all these problems required employing clustering technic to data mining and regrouping it within clusters with similar characteristics to outperform the portfolio

... Show More
View Publication Preview PDF
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Ranking Function to Solve a Fuzzy Multiple Objective Function
...Show More Authors

In this paper two ranking functions are employed to treat the fuzzy multiple objective (FMO) programming model, then using two kinds of membership function, the first one is trapezoidal fuzzy (TF) ordinary membership function, the second one is trapezoidal fuzzy weighted membership function. When the objective function is fuzzy, then should transform and shrinkage the fuzzy model to traditional model, finally solving these models to know which one is better

View Publication Preview PDF
Scopus (13)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
Fuzzy Real Pre-Hilbert Space and Some of Their Properties
...Show More Authors

In this work, two different structures are proposed which is fuzzy real normed space (FRNS) and fuzzy real Pre-Hilbert space (FRPHS). The basic concept of fuzzy norm on a real linear space is first presented to construct  space, which is a FRNS with some modification of the definition introduced by G. Rano and T. Bag. The structure of fuzzy real Pre-Hilbert space (FRPHS) is then presented which is based on the structure of FRNS. Then, some of the properties and related concepts for the suggested space FRN such as -neighborhood, closure of the set  named , the necessary condition for separable, fuzzy linear manifold (FLM) are discussed. The definition for a fuzzy seminorm on  is also introduced with the prove that a fuzzy seminorm on

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Al Mustansiriyah Journal Of Pharmaceutical Sciences
Multiple Sclerosis is a Risk Factor for Hyperthyroidism and Interferon Beta Action on Thyroid Hormones via Novel Immuno-neuro-enzymological Mechanisms
...Show More Authors

Objective : Multiple sclerosis (MS) is a common neurological disease deeply linked with the immune-inflammatory disorders whereas the term (multiple) mostly refers to the multi-focal zones of Inflammation caused by lymphocytes and macrophages infiltration besides oligodendrocytes death. Accordingly , the dysfunctional immune system able to damage myelin ( a pivotal component of the central nervous system ) which responsible for communication among neurons. The aim of the present study is to innovate a biochemical relationship between MS and thyroid hormones (THs) by highlighting immunological responses and also to examine the action of Interferon beta (IFNβ) drug on thyroid hormone (THs) and thyroid stimulation hormone (TSH). Materials and

... Show More
Preview PDF
Publication Date
Wed May 10 2023
Journal Name
Journal Of Engineering
Damage Detection and Assessment of Stiffness and Mass Matrices in Curved Simply Supported Beam Using Genetic Algorithm
...Show More Authors

In this study, a genetic algorithm (GA) is used to detect damage in curved beam model, stiffness as well as mass matrices of the curved beam elements is formulated using Hamilton's principle. Each node of the curved beam element possesses seven degrees of freedom including the warping degree of freedom. The curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam theory. The identification of damage is formulated as an optimization problem, binary and continuous genetic algorithms
(BGA, CGA) are used to detect and locate the damage using two objective functions (change in natural frequencies, Modal Assurance Criterion MAC). The results show the objective function based on change in natural frequency i

... Show More
View Publication Preview PDF
Crossref