This study examines the removal of ciprofloxacin in an aqueous solution using green tea silver nanoparticles (Ag-NPs). The synthesized Ag-NPs have been classified by the different techniques of SEM, AFM, BET, FTIR, and Zeta potential. Spherical nanoparticles with average sizes of 32 nm and a surface area of 1.2387m2/g are found to be silver nanoparticles. The results showed that the ciprofloxacin removal efficiency depends on the initial pH (2.5-10), CIP (2-15 mg/L), temperature (20-50°C), time (0-180 min), and Ag-NPs dosage (0.1-1g/L). Batch experiments revealed that the removal rate with ratio (1:1) (w/w) were 52%, and 79.8% of the 10 mg/L of CIP at 60, and 180 minutes, respectively with optimal pH=4. Kinetic models for adsorption and ciprofloxacin mechanism removal were also investigated, and kinetic analyzes showed adsorption to be a 3.8727kJ.mol-1 activation energy physical adsorption mechanism. The kinetic removal process, due to the low activation energy of 14.0606kJ.mol-1, is preferred the model of first-order after a physical diffusion-controlled reaction. Adsorption information from Langmuir, Freundlich, Temkin, and Dubinin models was followed, and the Dubinin isotherm model was the best-fitted model. the thermodynamic parameter ?G0 values at 20, 30, 40 and 50°C were (0.5163, -0.0691, -0.9589, -0.5927kJ/mol). The value of ?H0 and ?S0 were (12.713kJ/mol and 0.0422073kJ/mol.k) which indicated favorable and endothermic sorption. The presence and concentration of CIP in aqueous media were identified through UV analysis.
This paper concerns is the preparation and characterization of a bidentate ligand [4-(5,5- dimethyl-3-oxocyclohex-1-enylamino)-N-(5-methylisoxazol-3-yl) benzene sulfonamide]. The ligand was prepared from fusing of sulfamethoxazole and dimedone at (140) ºC for half hour. The complex was prepared by refluxing the ligand with a bivalent cobalt ion using ethanol as a solvent. The prepared ligand and complex were identified using Spectroscopic methods. The proposed tetrahedral geometry around the metal ions studied were concluded from these measurements. Both molar ratio and continuous variation method were studied to determine metal to ligand ratio (M:L). The M to L ratio was found to be (1:1). The adsorption of cobalt complex was carried out
... Show MoreSince the beginning of this century, a new communication map has been formed that foretells to get mankind to enter into a media environment in which the media is mixed with communication, which is technically and even intellectually known as integration.
This environment and its features are no different from the environment in its natural physical incision. If the level and temperature in the physical nature is a specific issue in the natural ecological balance, the level of freedoms, especially the transfer of information and views and circulation in society is also a determinant in the extent of media balance in the world on the one hand and in each country on the other.
There is also a special environment for nature,
... Show MoreThe research aims at showing the media awareness for Students, especially for the students of the preparatory schools through their following the mass media in forming the cultural, educational and political database. It also aims at building a content and prospectives that make them a wide awake stratum that safeguard the society which has faced huge effects of terrorist actions.
Furthermore, it aims at knowing to what extent that students have been acquainted with the printed and electronic newspapers. Finally, it aims at knowing to what extent that they are content with the mass media in covering and
... Show MoreThe nanostructured MnO2 /carbon fiber (CF) composite electrode was prepared using the anodic electrodeposition process. The crystal structure and morphology of MnO2 particles were determined with X-ray diffraction and field-emission scanning electron microscopy. The electrosorptive properties of the prepared electrode were investigated in the removal of cadmium ions from aqueous solution, and the effect of pH, cell voltage, and ionic strength was optimized and modeled using the response surface methodology combined with Box–Behnken design. The results confirm that the optimum conditions to remove Cd(II) ions were: pH of 6.03, a voltage of 2.77 V, and NaCl concentration of 3 g/L. The experimental results showed a good fit for the Freundli
... Show MoreThe current study was to examine the reliability and effectiveness of using most abundant, inexpensive waste in the form of scrap raw zero valent aluminum ZVAI and zero valent iron ZVI for the capture, retard, and removal of one of the most serious and hazardous heavy metals cadmium dissolved in water. Batch tests were conducted to examine contact time (0-250) min, sorbent dose (0.25-1 g ZVAI/100 mL and 2-8 g ZVI/100 mL), initial pH (3-6), pollutant concentration of 50mg/L initially, and speed of agitation (0-250) rpm . Maximum contaminant removal efficiency corresponding to (90 %) for cadmium at 250 min contact time, 1g ZVAI/ 6g ZVI sorbent mass ratio, pH 5.5, pollutant concentration of 50 mg/L initially, and 250 rpm agitation speed wer
... Show MoreReaction of,2- [( 4- amio phenyl ) diazenyl] 1,3,4- thiadiazole -5- thiol (S1) with p- chlorobenzeldehyde,3,4 – dimethoxy benzaldehyde and pyrrol-2- carbonxaldehyde gave -5- [{4-(4-chlorobenzylidene amino) phenyl} diezenyl]-1,3,4- thiadiazole-2- thiol (S2),5-[{ 4-[(3,4- dimethoxybenzyldene )amino phenyl ] diazenyl)-1,3,4- thiadiazole-2-thiol,(S3) and -5- [4-(1,H – pyrrol -2- yl- methylene)amino phenyl] diazenyl)-1,3,4- thiadiazole-2- thiol (S4) respectively as schiff's bases compounds. On the same route-2-[(4-amino-1- naphthyl ) diazenyl] -1,3,4- thiadiazole -5- thiol (S5) reacts with –p- chloro benzaldehyde and –m- nitrobenzaldehyde to give the follwing schiff's bases -5-[{ 4-(4- chloro benzylidene ) amino -1- naphthyl} diazenyl]
... Show MoreA process of bacterial cellulose gold nanocomposite has been investigated based on experimental work and cited literature. A literature review on the production process is carried out in this study. Bacterial cellulose is a high crystalline fabric material generally used in biomedical applications. A Nanocomposite was made by synthesis from gold and bacterial cellulose. The experimental work includes growing, and isolating bacterial cellulose, preparation of gold Nanoparticles and preparation of Nano composite. Nanoparticle’s formation and adsorption on the cellulose tissue have been observed visually, where a colour change was observed. The predicted particle size for the gold nano