<span>Distributed denial-of-service (DDoS) attack is bluster to network security that purpose at exhausted the networks with malicious traffic. Although several techniques have been designed for DDoS attack detection, intrusion detection system (IDS) It has a great role in protecting the network system and has the ability to collect and analyze data from various network sources to discover any unauthorized access. The goal of IDS is to detect malicious traffic and defend the system against any fraudulent activity or illegal traffic. Therefore, IDS monitors outgoing and incoming network traffic. This paper contains a based intrusion detection system for DDoS attack, and has the ability to detect the attack intelligently, dynamically and periodically by evaluating the set of attackers of the current node with its neighbors. We use dataset named CICDDoS2019 that contains on binary classes benign and DDoS. Performance has evaluated by applying data mining algorithms as well as applying the best features to discover potential attack classes.</span>
Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreA simple and smart algorithm was presented to recognize car plates in parking at the College of Science for Women, University of Baghdad, Iraq. The study consists of recording video clips of all cars parked in the selected area. The studied camera heights were1m and 2m, and the video clips were 19 and 30. Images were extracted from the video clip to be used for training data for the cascade method. Haar classification was used to detect license plates after the training step. Viola-jones algorithm was applied to the output of Haar’s data for both camera heights (1m and 2m). The accuracy was calculated for all data with different weather conditions and local time recoding. The accuracy is 100% for all data in this study.
<
... Show MoreThe research aims to determine the impact of employees’ retention strategy on organizational memory. This research is historical, descriptive, and analytical. The sample consists of 158 faculty members in five private colleges in Baghdad. The technique used to analyze the data is SEM (Structural Equation Modeling), and SPSS (Statistical Package for the Social Sciences). The research concludes that the employees retaining strategy plays a vital role in retaining employees and hence maintains organizational memory. The findings and recommendations of this research assure the administrations of private colleges that employees retention strategy play a vital role in retaining its employee and hence maintains organizational memory. T
... Show MoreThis article discusses the estimation methods for parameters of a generalized inverted exponential distribution with different estimation methods by using Progressive type-I interval censored data. In addition to conventional maximum likelihood estimation, the mid-point method, probability plot method and method of moments are suggested for parameter estimation. To get maximum likelihood estimates, we utilize the Newton-Raphson, expectation -maximization and stochastic expectation-maximization methods. Furthermore, the approximate confidence intervals for the parameters are obtained via the inverse of the observed information matrix. The Monte Carlo simulations are used to introduce numerical comparisons of the proposed estimators. In ad
... Show MoreThe present research deals with the influencing factors which depends on the way perceptual of the graphic designer which enters in the design logos of the loco European health, where the search include four chapters, the researcher reviewed in the chapter 0ne the methodical frame of the research ,as reviewed in the second chapter the theoretical frame, and the previous studies which included three sections, the first section included the perceptual understandable and types of it, and the second section included the influencing factors in the designer perceptual ways and its division . While the third section included the perceptual in graphic designer through the percepted shapes and the relation with ground and colors for express the i
... Show MoreAmplitude variation with offset (AVO) analysis is an 1 efficient tool for hydrocarbon detection and identification of elastic rock properties and fluid types. It has been applied in the present study using reprocessed pre-stack 2D seismic data (1992, Caulerpa) from north-west of the Bonaparte Basin, Australia. The AVO response along the 2D pre-stack seismic data in the Laminaria High NW shelf of Australia was also investigated. Three hypotheses were suggested to investigate the AVO behaviour of the amplitude anomalies in which three different factors; fluid substitution, porosity and thickness (Wedge model) were tested. The AVO models with the synthetic gathers were analysed using log information to find which of these is the
... Show MoreData centric techniques, like data aggregation via modified algorithm based on fuzzy clustering algorithm with voronoi diagram which is called modified Voronoi Fuzzy Clustering Algorithm (VFCA) is presented in this paper. In the modified algorithm, the sensed area divided into number of voronoi cells by applying voronoi diagram, these cells are clustered by a fuzzy C-means method (FCM) to reduce the transmission distance. Then an appropriate cluster head (CH) for each cluster is elected. Three parameters are used for this election process, the energy, distance between CH and its neighbor sensors and packet loss values. Furthermore, data aggregation is employed in each CH to reduce the amount of data transmission which le
... Show MoreImproving performance is an important issue in Wireless Sensor Networks (WSN). WSN has many limitations including network performance. The research question is how to reduce the amount of data transmitted to improve network performance?
The work will include one of the dictionary compression methods which is Lempel Ziv Welch(LZW). One problem with the dictionary method is that the token size is fixed. The LZW dictionary method is not very useful with little data, because it loses many byt
... Show MoreTraffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show More