In this study, NAC-capped CdTe/CdS/ZnS core/double shell QDs were synthesized in an aqueous medium to investigate their utility in distinguishing normal DNA from mutated DNA extracted from biological samples. Following the interaction between the synthesized QDs with DNA extracted from leukemia cases (represents damaged DNA) and that of healthy donors (represents undamaged DNA), differential fluorescent emission maxima and intensities were observed. It was found that damaged DNA from leukemic cells DNA-QDs conjugates at 585 nm while intact DNA (from healthy subjects) DNA–QDs conjugates at 574 nm. The obtained results from the optical analyses indicate that the prepared QDs could be utilized as probe for detecting disrupted DNA that is associated with a number of diseases including malignancies. Additionally, the manufactured NAC-CdTe core with CdS shell and ZnS shell QDs were further characterized by high-resolution transmission using field emission scanning electron microscopy (FESEM), energy dispersive X-ray fluorescence (EDX), X-ray diffraction (XRD), infrared spectrum (IR), UV-vis absorbance, photoluminescence (PL) and absorbency intensity using the fully automatic ELISA. The XRD results revealed the formation of NAC-CdTe/CdS/ZnS QDs with a grain size of 5.7 nm. While EDX assay emphasizes the compound content of Cd, S, Zn and Te elements. Whereas SEM test’s findings propose the spherical size of NAC- CdTe/CdS/ZnS QDs within the range of 10–40 nm. The demonstrated mono-dispersed lattice structure of NAC-CdTe core with CdS shell and ZnS shell QDs has superior PL emission properties at [Formula: see text] of [Formula: see text]600 nm and UV-Vis absorption bands at 350 nm. Overall, this study suggests that the synthesized QDs could be employed in developing optical biosensors for a variety of biomedical applications to improve early detection of diseases marked by damaged DNA profile including cancers.
A recently reported Nile red (NR) dye conjugated with benzothiadiazole species paves the way for the development of novel organic-based sensitizers used in solar cells whose structures are susceptible to modifications. Thus, six novel NR structures were derived from two previously developed structures in laboratories. In this study, density functional theory (DFT) calculations and time-dependent DFT (TD-DFT) were used to determine the optoelectronic properties of the NR-derived moieties such as absorption spectra. Various linkers were investigated in an attempt to understand the impact of π-linkers on the optoelectronic properties. According to the findings, the presence of furan species led to the planarity of the molecule and a reduction
... Show MoreSelf-Assertion is the individual ability to express any emotion well, except the anxiety. The decrease of the individuals asserting behavior makes them face many difficulties that prevent their social adjustment. Moreover it reflexes many negative behavioral and physical cases. The individual, who fails to express his or her negative feelings in required situations, feels with dissatisfaction, loneliness, depression, anxiety, social anxiety, conflict, and psychological disorder.
Accordingly, the importance of this study is represented in studying the self-assertion and studying the university students who reflect the strength of society.
The following are the two aims of the study:
1. Construct an asserting behavior scale.
2.
This paper represent the second step i n a molecular clon i ng program ai ming to clone large DNA fi·agmen ts of the sal t tolerant bermudagrass (Cyrwdon dactylon L.) DNA usi ng the bacteriophage (EM13L3) as a vector.
In th is work, a yield of about I 00 g bacteriophage DNA per one liter culture.was obtained with.a purity ranging between (1.7-1.8). The vector JJNA v.as completely double digested with the restriction enzymes llamHI and EcoRI, followed by pu
... Show MoreThe pure ZnS and ZnS-Gr nanocomposite have been prepared
successfully by a novel method using chemical co-precipitation. Also
conductive polymer PPy nanotubes and ZnS-PPy nanocomposite
have been synthesized successfully by chemical route. The effect of
graphene on the characterization of ZnS has been investigated. X-ray
diffraction (XRD) study confirmed the formation of cubic and
hexagonal structure of ZnS-Gr. Dc-conductivity proves that ZnS and
ZnS-Gr have semiconductor behavior. The SEM proved that
formation of PPy nanotubes and the Gr nanosheet. The sensing
properties of ZnS-PPy/ZnS-Gr for NO2 gas was investigated as a
function of operating temperature and time under optimal condition.
The sensitivity,
In this study ZnS thin film was prepared by using thermal evaporation vacuum technique under the pressure (10-6) Torr on glass substrate at room temperature and annealing at 523 K Samples were irradiated to CO2 laser of power (1 watt) and wave length (10.6) μm at distance 10 cm from the source during (5 sec). The absorbance spectra was recorded by using UV-visible spectrophotometer and used to calculated some of optical properties investigated including their transmittance, reflectance spectra, energy gap, and extinction coefficient. From the result of thin films samples at room temperature and at 523 K, we conclude that the irradiation by laser causes a decrease in the transmittance and increasing in reflection and extinction coeffic
... Show MoreMicroencapsulated of paraffin wax which acts as core material of phase change
material covered by polymer was prepared by using rabid (physical-chemical) with lower
energy (green) method. Prepolymer of condensed Melamine-Formaldehyde resin, was
solidified by heat effect gradually and surrounds the Paraffin wax as microcapsules. The
diameter of the prepared capsules was about (170-220) micron which has a proportion with
the prepolymer temperature, otherwise the thermal analysis appears as a best value of
enthalpy (ΔH) which was (12 J/gm) when the prepolymer temperature was (60˚C)