<p>The objective of this paper is to study the dynamical behavior of an aquatic food web system. A mathematical model that includes nutrients, phytoplankton and zooplankton is proposed and analyzed. It is assumed that, the phytoplankton divided into two compartments namely toxic phytoplankton which produces a toxic substance as a defensive strategy against predation by zooplankton, and a nontoxic phytoplankton. All the feeding processes in this food web are formulating according to the Lotka-Volterra functional response. This model is represented mathematically by the set of nonlinear differential equations. The existence, uniqueness and boundedness of the solution of this model are investigated. The local and global stability conditions of all possible equilibrium points are established. The occurrence of local bifurcation and Hopf bifurcation are investigated. Finally, numerical simulation is used to study the global dynamics of this model.</p>
This paper presents a novel idea as it investigates the rescue effect of the prey with fluctuation effect for the first time to propose a modified predator-prey model that forms a non-autonomous model. However, the approximation method is utilized to convert the non-autonomous model to an autonomous one by simplifying the mathematical analysis and following the dynamical behaviors. Some theoretical properties of the proposed autonomous model like the boundedness, stability, and Kolmogorov conditions are studied. This paper's analytical results demonstrate that the dynamic behaviors are globally stable and that the rescue effect improves the likelihood of coexistence compared to when there is no rescue impact. Furthermore, numerical simul
... Show MoreIn this paper, a Sokol-Howell prey-predator model involving strong Allee effect is proposed and analyzed. The existence, uniqueness, and boundedness are studied. All the five possible equilibria have been are obtained and their local stability conditions are established. Using Sotomayor's theorem, the conditions of local saddle-node and transcritical and pitchfork bifurcation are derived and drawn. Numerical simulations are performed to clarify the analytical results
Start your abstract here the objective of this paper is to study the dynamical behaviour of an eco-epidemiological system. A prey-predator model involving infectious disease with refuge for prey population only, the (SI_) infectious disease is transmitted directly, within the prey species from external sources of the environment as well as, through direct contact between susceptible and infected individuals. Linear type of incidence rate is used to describe the transmission of infectious disease. While Holling type II of functional responses are adopted to describe the predation process of the susceptible and infected predator respectively. This model is represented mathematically by
The mathematical construction of an ecological model with a prey-predator relationship was done. It presumed that the prey consisted of a stage structure of juveniles and adults. While the adult prey species had the power to fight off the predator, the predator, and juvenile prey worked together to hunt them. Additionally, the effect of the harvest was considered on the prey. All the solution’s properties were discussed. All potential equilibrium points' local stability was tested. The prerequisites for persistence were established. Global stability was investigated using Lyapunov methods. It was found that the system underwent a saddle-node bifurcation near the coexistence equilibrium point while exhibiting a transcritical bifurcation
... Show MoreContracting cancer typically induces a state of terror among the individuals who are affected. Exploring how glucose excess, estrogen excess, and anxiety work together to affect the speed at which breast cancer cells multiply and the immune system’s response model is necessary to conceive of ways to stop the spread of cancer. This paper proposes a mathematical model to investigate the impact of psychological panic, glucose excess, and estrogen excess on the interaction of cancer and immunity. The proposed model is precisely described. The focus of the model’s dynamic analysis is to identify the potential equilibrium locations. According to the analysis, it is possible to establish four equilibrium positions. The stability analys
... Show MoreThe influence of fear on the dynamics of harvested prey-predator model with intra-specific competition is suggested and studied, where the fear effect from the predation causes decreases of growth rate of prey. We suppose that the predator attacks the prey under the Holling type IV functional response. he existence of the solution is investigated and the bounded-ness of the solution is studied too. In addition, the dynamical behavior of the system is established locally and globally. Furthermore, the persistence conditions are investigated. Finally, numerical analysis of the system is carried out.
Abstract
The issue of the protection of the environment is a shared responsibility between several destinations and sectors, and constitutes a main subject in which they can achieve sustainable development. In the sectors of government programs can be set up towards the establishment of the government sector to the green environment, so to be the implementati
... Show MoreA summary of zooplankton research done in Peruvian marine waters is presented. We first provide a brief overview of the evolution of zooplankton studies off Peru before reviewing zooplankton biodiversity, regional distribution, seasonal and interannual fluctuation, trophodynamics, secondary production, and modeling are some of these topics. We evaluate research on various meroplankton, macroplankton, mesoplankton, and microplankton groups and provide a list of species from both published and unpublished sources. Three regional zooplankton groups have been identified: A shelf group on the continental shelf dominated by Acartia tonsa and Centropages brachiatus; A slope group on the continental shelf with siphonophores, bivalves, foramin
... Show More