Preferred Language
Articles
/
NRdyW5MBVTCNdQwCsdLE
Prenatal Markers of Foetal Complications

Prenatal markers are commonly used in practice to screen for some foetal abnormalities. They can be biochemical or ultrasonic markers in addition to the newly used cell free Deoxyribonucleic Acid (DNA) estimation. This review aimed to illustrate the applications of the prenatal screening, and the reliability of these tests in detecting the presence of abnormal chromosomes such as trisomy-21, trisomy-18, and trisomy-13 in addition to neural tube defects. Prenatal markers can also be used in the anticipation of some obstetrical complications depending on levels of these markers in the mother’s circulation. In the developed countries, prenatal screening tests are regularly used during antenatal care period. Neural tube defects, numerical and structural chromosomal abnormalities, in addition to some obstetrical problems are commonly screened for, by using prenatal tests. Maternal education about the importance of performing these tests should be done in order to improve the detection rate of foetal abnormalities and some pregnancy complications.

Clarivate Crossref
View Publication
Publication Date
Thu May 04 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Design Feed Forward Neural Network to Determine Doses of the Decongestant for Cold Pills

The aim of this paper is to design feed forward neural network to determine the effects of
cold pills and cascades from simulation the problem to system of first order initial value
problem. This problem is typical of the many models of the passage of medication throughout
the body. Designer model is an important part of the process by which dosage levels are set.
A critical factor is the need to keep the levels of medication high enough to be effective, but
not so high that they are dangerous.

View Publication Preview PDF
Publication Date
Thu Apr 21 2022
Journal Name
Journal Of Ecological Engineering
Simultaneous Adsorption of Ternary Antibiotics (Levofloxacin, Meropenem, and Tetracycline) by SunFlower Husk Coated with Copper Oxide Nanoparticles

In this study, a new adsorbent derived from sunflower husk powder and coated in CuO nanoparticles (CSFH) was investigated to evaluate the simultaneous adsorption of Levofloxacin (LEV), Meropenem (MER), and Tetracycline (TEC) from an aqueous solution. Significant improvements in the adsorption capacity of the sunflower husk were identified after the powder particles had been coated in CuO nanoparticles. Kinetic data were correlated using a pseudo-second-order model, and was successful for the three antibiotics. Moreover, high compatibility was identified between the LEV, MER, and TEC, isotherm data, and the Langmuir model, which produced a better fit to suit the isotherm curves. In addition, the spontaneous and exothermic nature of the adsor

... Show More
Scopus (20)
Crossref (22)
Scopus Clarivate Crossref
Publication Date
Sun Dec 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of Fractional Hold-Up in RDC Column Using Artificial Neural Network

In the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However,
these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, vc , vd , Dr , c d m / m ,
s . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52%
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the
developed ANN correlation noticeably

... Show More
View Publication Preview PDF
Publication Date
Fri Jun 24 2022
Journal Name
Iraqi Journal Of Science
Feature Extraction of Human Facail Expressions Using Haar Wavelet and Neural network

One of the challenging and active research topics in the recent years is Facial Expression. This paper presents the method to extract the features from the facial expressions from still images. Feature extraction is very important for classification and recognition process. This paper involve three stages which contain capture the images, pre-processing and feature extractions. This method is very efficient in feature extraction by applying haar wavelet and Karhunen-Loève Transform (KL-T). The database used in this research is from Cohen-Kanade which used six expressions of anger, sadness fear, happiness, disgust and surprise. Features that have been extracted from the image of facial expressions were used as inputs to the neural networ

... Show More
View Publication Preview PDF
Publication Date
Tue Sep 29 2020
Journal Name
Iraqi Journal Of Science
An Automated Classification of Mammals and Reptiles Animal Classes Using Deep Learning

Detection and classification of animals is a major challenge that is facing the researchers. There are five classes of vertebrate animals, namely the Mammals, Amphibians, Reptiles, Birds, and Fish, and each type includes many thousands of different animals. In this paper, we propose a new model based on the training of deep convolutional neural networks (CNN) to detect and classify two classes of vertebrate animals (Mammals and Reptiles). Deep CNNs are the state of the art in image recognition and are known for their high learning capacity, accuracy, and robustness to typical object recognition challenges. The dataset of this system contains 6000 images, including 4800 images for training. The proposed algorithm was tested by using 1200

... Show More
Scopus (5)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu May 10 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
An Improvement of MRI Brain Images Classification Using Dragonfly Algorithm as Trainer of Artificial Neural Network

  Computer software is frequently used for medical decision support systems in different areas. Magnetic Resonance Images (MRI) are widely used images for brain classification issue. This paper presents an improved method for brain classification of MRI images. The proposed method contains three phases, which are, feature extraction, dimensionality reduction, and an improved classification technique. In the first phase, the features of MRI images are obtained by discrete wavelet transform (DWT). In the second phase, the features of MRI images have been reduced, using principal component analysis (PCA). In the last (third) stage, an improved classifier is developed. In the proposed classifier, Dragonfly algorithm is used instead

... Show More
Crossref (14)
Crossref
View Publication Preview PDF
Publication Date
Mon Nov 11 2019
Journal Name
Spe
Modeling Rate of Penetration using Artificial Intelligent System and Multiple Regression Analysis
Abstract<p>Over the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.</p><p>The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parame</p> ... Show More
Crossref (5)
Crossref
View Publication Preview PDF
Publication Date
Thu Dec 31 2020
Journal Name
Indian Journal Of Forensic Medicine & Toxicology
Impact of Years’ Experience upon Nurses’ Knowledge and Practice concerning Infection Control at Critical Care Units in Baghdad City

Introduction: Infection control or hospital-acquired infections are the major concern of the health care system and agencies. Critical care nurses are on the first-line contact with the patients, so on, they are most vulnerable to acquired infections. It is really important to regularly check their knowledge and practices concerning infection control. Objectives: The study aims to identify the impact of years’ experience on nurses’ knowledge and practices concerning infection control in three hospitals and center (Baghdad teaching hospital, Ibn Al-Nafees hospital, and Ibn al-Bitar center) Methodology: Cross-sectional study was conducted, the study starting from 4th of July 2020 to 13th of November 2020. Non-probability (purposive) sampl

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Robotics And Control (jrc)
Artificial Intelligence Based Deep Bayesian Neural Network (DBNN) Toward Personalized Treatment of Leukemia with Stem Cells

The dynamic development of computer and software technology in recent years was accompanied by the expansion and widespread implementation of artificial intelligence (AI) based methods in many aspects of human life. A prominent field where rapid progress was observed are high‐throughput methods in biology that generate big amounts of data that need to be processed and analyzed. Therefore, AI methods are more and more applied in the biomedical field, among others for RNA‐protein binding sites prediction, DNA sequence function prediction, protein‐protein interaction prediction, or biomedical image classification. Stem cells are widely used in biomedical research, e.g., leukemia or other disease studies. Our proposed approach of

... Show More
Scopus (2)
Crossref (2)
Scopus Crossref
View Publication
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Detecting DNA of multispecies dinoflagellate cysts in the sediment from three estuaries of Makassar strait and fishing port using CO1 primer: Is it CO1 primer suitable for detecting DNA dinoflagellate?

Most dinoflagellate had a resting cyst in their life cycle.  This cyst was developed in unfavorable environmental condition. The conventional method for identifying dinoflagellate cyst in natural sediment requires morphological observation, isolating, germinating and cultivating the cysts.  PCR is a highly sensitive method for detecting dinoflagellate cyst in the sediment.  The aim of this study is to examine whether CO1 primer could detect DNA of multispecies dinoflagellate cysts in the sediment from our sampling sites. Dinoflagellate cyst DNA was extracted from 16 sediment samples. PCR method using COI primer was running. The sequencing of dinoflagellate cyst DNA was using BLAST. Results showed that there were two clades of dinoflag

... Show More
Scopus Crossref
View Publication Preview PDF