Preferred Language
Articles
/
NRdyW5MBVTCNdQwCsdLE
Prenatal Markers of Foetal Complications

Prenatal markers are commonly used in practice to screen for some foetal abnormalities. They can be biochemical or ultrasonic markers in addition to the newly used cell free Deoxyribonucleic Acid (DNA) estimation. This review aimed to illustrate the applications of the prenatal screening, and the reliability of these tests in detecting the presence of abnormal chromosomes such as trisomy-21, trisomy-18, and trisomy-13 in addition to neural tube defects. Prenatal markers can also be used in the anticipation of some obstetrical complications depending on levels of these markers in the mother’s circulation. In the developed countries, prenatal screening tests are regularly used during antenatal care period. Neural tube defects, numerical and structural chromosomal abnormalities, in addition to some obstetrical problems are commonly screened for, by using prenatal tests. Maternal education about the importance of performing these tests should be done in order to improve the detection rate of foetal abnormalities and some pregnancy complications.

Clarivate Crossref
View Publication
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Self-Localization of Guide Robots Through Image Classification

The field of autonomous robotic systems has advanced tremendously in the last few years, allowing them to perform complicated tasks in various contexts. One of the most important and useful applications of guide robots is the support of the blind. The successful implementation of this study requires a more accurate and powerful self-localization system for guide robots in indoor environments. This paper proposes a self-localization system for guide robots.  To successfully implement this study, images were collected from the perspective of a robot inside a room, and a deep learning system such as a convolutional neural network (CNN) was used. An image-based self-localization guide robot image-classification system delivers a more accura

... Show More
Scopus (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Dec 26 2017
Journal Name
Al-khwarizmi Engineering Journal
Optimization of Wear Parameters in AISI 4340 Steel

Abstract

 This study investigated the optimization of wear behavior of AISI 4340 steel based on the Taguchi method under various testing conditions. In this paper, a neural network and the Taguchi design method have been implemented for minimizing the wear rate in 4340 steel. A back-propagation neural network (BPNN) was developed to predict the wear rate. In the development of a predictive model, wear parameters like sliding speed, applying load and sliding distance were considered as the input model variables of the AISI 4340 steel. An analysis of variance (ANOVA) was used to determine the significant parameter affecting the wear rate. Finally, the Taguchi approach was applied to determine

... Show More
View Publication Preview PDF
Publication Date
Thu May 05 2022
Journal Name
Al-kindy College Medical Journal
Safety profile of immediate post-partum intrauterine device insertion during caesarean delivery – a clinical trial with three years of follow up: Utility of Immediate Post Placental Insertion of Intrauterine Device During Cesarean Delivery

Background: Many countries recommend the use of long-acting reversible contraceptive intrauterine device immediately after cesarean delivery. The cesarean delivery rate in Iraqi public hospitals is 32.2% and may reach 85.8% in private hospitals. Immediate post-partum intrauterine device insertion at cesarean is rarely done in Iraq.

Objectives: To assess the safety and practicality of immediate post-partum intrauterine device insertion during cesarean delivery for family planning and pregnancy spacing in Iraqi women.

Subjects and Methods: A single arm clinical trial included 150 eligible women who attended Al-‎Elwiyah Maternity Teaching Hospital or Al Hayat Rahibat Hospita

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Sep 30 2016
Journal Name
Al-khwarizmi Engineering Journal
Modeling the removal of Cadmium Ions from Aqueous Solutions onto Olive Pips Using Neural Network Technique

The uptake of Cd(II) ions from simulated wastewater onto olive pips was modeled using artificial neural network (ANN) which consisted of three layers. Based on 112 batch experiments, the effect of contact time (10-240 min), initial pH (2-6), initial concentration (25-250 mg/l), biosorbent dosage (0.05-2 g/100 ml), agitation speed (0-250 rpm) and temperature (20-60ºC) were studied. The maximum uptake (=92 %) of Cd(II) was achieved at optimum parameters of 60 min, 6, 50 mg/l, 1 g/100 ml, 250 rpm and 25ºC respectively.

Tangent sigmoid and linear transfer functions of ANN for hidden and output layers respectively with 7 neurons were sufficient to present good predictions for cadmium removal efficiency with coefficient of correlatio

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Structures
Horizontal pushout tests and parametric analyses of a locking-bolt demountable shear connector

A ‘locking-bolt’ demountable shear connector (LBDSC) is proposed to facilitate the deconstruction and reuse of steel-concrete composite structures, in line with achieving a more sustainable construction design paradigm. The LBDSC is comprised of a grout-filled steel tube and a geometrically compatible partially threaded bolt. The latter has a geometry that ‘locks’ the bolt in compatible holes predrilled on the steel flange and eliminates initial slip and construction tolerance issues. The structural behaviour of the LBDSC is evaluated through nine pushout tests using a horizontal test setup. The effects of the tube thickness, strength of concrete slab, and strength of infilled grout on the shear resistance, initial stiffness, and du

... Show More
Scopus (20)
Crossref (21)
Scopus Clarivate Crossref
View Publication
Publication Date
Thu Apr 27 2023
Journal Name
Journal Of The Faculty Of Medicine Baghdad
The Use of Off-label and Unlicensed Drugs for Neonates: A Report from a Teaching Hospital in Baghdad

Background: Neonates who are admitted to hospitals will need various drugs. The use of unlicensed or off-label drugs without scientific evidence makes this exposure unsafe.

Aim of study: We aimed to assess the use of drugs for neonates based on the British National Formulary for Children and IBM Micromedex Neofax.

Patients and methods: This is a descriptive study which reviewed the clinical files of enrolled neonates who have stayed in the hospital for more than 24 hours and received at least one drug. It was conducted in the neonatal care unit of the Children Welfare Teaching Hospital/ Medical City Complex in Baghdad during the period from 1st of January to 30th of June/20

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Aug 30 2023
Journal Name
Baghdad Science Journal
Deep Learning-based Predictive Model of mRNA Vaccine Deterioration: An Analysis of the Stanford COVID-19 mRNA Vaccine Dataset

The emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA

... Show More
Scopus (4)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Classification of Arabic Alphabets Using a Combination of a Convolutional Neural Network and the Morphological Gradient Method

The field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet

... Show More
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Mar 01 2017
Journal Name
International Communications In Heat And Mass Transfer
Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al 2 O 3 nanofluids by NSGA-II using ANN

In this study, multi-objective optimization of nanofluid aluminum oxide in a mixture of water and ethylene glycol (40:60) is studied. In order to reduce viscosity and increase thermal conductivity of nanofluids, NSGA-II algorithm is used to alter the temperature and volume fraction of nanoparticles. Neural network modeling of experimental data is used to obtain the values of viscosity and thermal conductivity on temperature and volume fraction of nanoparticles. In order to evaluate the optimization objective functions, neural network optimization is connected to NSGA-II algorithm and at any time assessment of the fitness function, the neural network model is called. Finally, Pareto Front and the corresponding optimum points are provided and

... Show More
Crossref (111)
Crossref
Publication Date
Sat May 09 2015
Journal Name
International Journal Of Innovations In Scientific Engineering
USING ARTIFICIAL NEURAL NETWORK TECHNIQUE FOR THE ESTIMATION OF CD CONCENTRATION IN CONTAMINATED SOILS

The aim of this paper is to design artificial neural network as an alternative accurate tool to estimate concentration of Cadmium in contaminated soils for any depth and time. First, fifty soil samples were harvested from a phytoremediated contaminated site located in Qanat Aljaeesh in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. The inputs are the soil depth, the time, and the soil parameters but the output is the concentration of Cu in the soil for depth x and time t. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Cadmium. The performance of the ANN technique was compared with the traditional laboratory inspecting

... Show More
View Publication