Preferred Language
Articles
/
NBh5hZgBVTCNdQwCB74T
Improving Barcode Vision Scanning Process using a Drone-based Tracking PID Controller for Warehouse in Industry 4.0
...Show More Authors

Drones play a vital role in the fundamental aspects of Industry 4.0 by converting conventional warehouses into intelligent ones, particularly in the realm of barcode scanning. Various potential issues frequently arise during barcode scanning by drones, specifically when the drone camera has difficulty obtaining distinct images due to certain factors, such as distance, capturing the image whilst flying, noise in the environment and different barcode dimensions. In addressing these challenges, this study proposes an approach that combines a proportional–integral–derivative (PID) controller with image processing techniques. The PID controller is responsible for continuously monitoring the camera’s input, detecting the difference between the planned and the real barcode image dimensions, and making immediate changes to the drone position to improve the process of detecting the potential barcode. The aforementioned procedure is implemented on the DJI Tello drone to verify the practical performance of the methodology introduced in this study. Results showed that drones can achieve remarkable barcode scanning performance by incorporating sophisticated computer vision technologies into PID controllers. PID computer vision algorithms are capable of analysing visual data acquired from the drone’s cameras and retrieving barcode information under a variety of situations, such as the size of the barcode, location of the barcode and noise of the warehouse environment.

Crossref
View Publication
Publication Date
Fri Jan 01 2021
Journal Name
Journal Of Engineering
Design of a PID-Lead Compensator for a Twin Rotor Aerodynamic System (TRAS)
...Show More Authors

This paper deals with a Twin Rotor Aerodynamic System (TRAS). It is a Multi-Input Multi-Output (MIMO) system with high crosscoupling between its two channels. It proposes a hybrid design procedure that combines frequency response and root locus approaches. The proposed controller is designated as PID-Lead Compensator (PIDLC); the PID controller was designed in previous work using frequency response design specifications, while the lead compensator is proposed in this paper and is designed using the root locus method. A general explicit formula for angle computations in any of the four quadrants is also given. The lead compensator is designed by shifting the dominant closed-loop poles slightly to the left in the s-plane. This has the effect

... Show More
Publication Date
Wed Dec 13 2017
Journal Name
Al-khwarizmi Engineering Journal
Design of a Kinematic Neural Controller for Mobile Robots based on Enhanced Hybrid Firefly-Artificial Bee Colony Algorithm
...Show More Authors

The paper present design of a control structure that enables integration of a Kinematic neural controller for trajectory tracking of a nonholonomic differential two wheeled mobile robot, then  proposes a Kinematic neural controller to direct a National Instrument mobile robot (NI Mobile Robot). The controller is to make the actual velocity of the wheeled mobile robot close the required velocity by guarantees that the trajectory tracking mean squire error converges at minimum tracking error. The proposed tracking control system consists of two layers; The first layer is a multi-layer perceptron neural network system that controls the mobile robot to track the required path , The second layer is an optimization layer ,which is impleme

... Show More
View Publication Preview PDF
Publication Date
Wed Jul 31 2019
Journal Name
Journal Of Engineering
A Comparative Study of Various Intelligent Optimization Algorithms Based on Path Planning and Neural Controller for Mobile Robot
...Show More Authors

In this paper, a cognitive system based on a nonlinear neural controller and intelligent algorithm that will guide an autonomous mobile robot during continuous path-tracking and navigate over solid obstacles with avoidance was proposed. The goal of the proposed structure is to plan and track the reference path equation for the autonomous mobile robot in the mining environment to avoid the obstacles and reach to the target position by using intelligent optimization algorithms. Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) Algorithms are used to finding the solutions of the mobile robot navigation problems in the mine by searching the optimal paths and finding the reference path equation of the optimal

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sat Jul 22 2023
Journal Name
Journal Of Engineering
Hybrid Controller for a Single Flexible Link Manipulator
...Show More Authors

In this study, the dynamic modeling and step input tracking control of single flexible link is studied. The Lagrange-assumed modes approach is applied to get the dynamic model of a planner single link manipulator. A Step input tracking controller is suggested by utilizing the hybrid controller approach to overcome the problem of vibration of tip position through motion which is a characteristic of the flexible link system. The first controller is a modified version of the proportional-derivative (PD) rigid controller to track the hub position while sliding mode (SM) control is used for vibration damping. Also, a second controller (a fuzzy logic based proportional-integral plus derivative (PI+D) control scheme) is developed for both vibra

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jan 01 2015
Journal Name
The 2d International Conference Of Buildings, Construction And Environmental Engineering (bcee2-2015)
Terrestrial Laser Scanning to Preserve Cultural Heritage in Iraq Using Monitoring Techniques
...Show More Authors

English

View Publication
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
Design of New Hybrid Neural Controller for Nonlinear CSTR System based on Identification
...Show More Authors

This paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Mar 31 2021
Journal Name
Electronics
Adaptive Robust Controller Design-Based RBF Neural Network for Aerial Robot Arm Model
...Show More Authors

Aerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A

... Show More
View Publication
Scopus (38)
Crossref (34)
Scopus Clarivate Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Engineering
Tuning of PID Controllers for Quadcopter System using Cultural Exchange Imperialist Competitive Algorithm
...Show More Authors

Quadrotors are coming up as an attractive platform for unmanned aerial vehicle (UAV) research, due to the simplicity of their structure and maintenance, their ability to hover, and their vertical take-off and landing (VTOL) capability. With the vast advancements in small-size sensors, actuators, and processors, researchers are now focusing on developing mini UAV’s to be used in both research and commercial applications. This work presents a detailed mathematical nonlinear dynamic model of the quadrotor which is formulated using the Newton-Euler method. Although the quadrotor is a 6 DOF under-actuated system, the derived rotational subsystem is fully actuated, while the translational subsystem is under-actuated. The der

... Show More
View Publication Preview PDF
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Engineering
Using a New Modification on Wind Turbine Ventilator for Improving Indoor Air Quality
...Show More Authors

This paper describes a newly modified wind turbine ventilator that can achieve highly efficient ventilation. The new modification on the conventional wind turbine ventilator system may be achieved by adding a Savonius wind turbine above the conventional turbine to make it work more efficiently and help spinning faster. Three models of the Savonius wind turbine with 2, 3, and 4 blades' semicircular arcs are proposed to be placed above the conventional turbine of wind ventilator to build a hybrid ventilation turbine. A prototype of room model has been constructed and the hybrid turbine is placed on the head of the room roof. Performance's tests for the hybrid turbine with a different number of blades and different values o

... Show More
View Publication Preview PDF
Publication Date
Sat Feb 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
How geometric reverse engineering techniques can conserve our heritage; a case study in Iraq using 3D laser scanning
...Show More Authors
Abstract<p>Laser scanning has become a popular technique for the acquisition of digital models in the field of cultural heritage conservation and restoration nowadays. Many archaeological sites were lost, damaged, or faded, rather than being passed on to future generations due to many natural or human risks. It is still a challenge to accurately produce the digital and physical model of the missing regions or parts of our cultural heritage objects and restore damaged artefacts. The typical manual restoration can become a tedious and error-prone process; also can cause secondary damage to the relics. Therefore, in this paper, the automatic digital application process of 3D laser modelling of arte</p> ... Show More
View Publication
Scopus (8)
Crossref (4)
Scopus Clarivate Crossref