Let R be a commutative ring with 1 and M be a (left) unitary R – module. This essay gives generalizations for the notions prime module and some concepts related to it. We termed an R – module M as semi-essentially prime if annR (M) = annR (N) for every non-zero semi-essential submodules N of M. Given some of their advantages characterizations and examples, and we study the relation between these and some classes of modules.
Let h is Γ−(λ,δ) – derivation on prime Γ−near-ring G and K be a nonzero semi-group ideal of G and δ(K) = K, then the purpose of this paper is to prove the following :- (a) If λ is onto on G, λ(K) = K, λ(0) = 0 and h acts like Γ−hom. or acts like anti–Γ−hom. on K, then h(K) = {0}.(b) If h + h is an additive on K, then (G, +) is abelian.
Let R be a commutative ring with identity. R is said to be P.P ring if every principle ideal of R is projective. Endo proved that R is P.P ring if and only if Rp is an integral domain for each prime ideal P of R and the total quotient ring Rs of R is regular. Also he proved that R is a semi-hereditary ring if and only if Rp is a valuation domain for each prime ideal P of R and the total quotient Rs of R is regular. , and we study some of properties of these modules. In this paper we study analogue of these results in C.F, C.P, F.G.F, F.G.P R-modules.
Let R be a commutative ring with identity and M be an unitary R-module. Let ï¤(M) be the set of all submodules of M, and ï¹: ï¤(M)  ï¤(M)  {ï¦} be a function. We say that a proper submodule P of M is ï¹-prime if for each r  R and x  M, if rx  P, then either x  P + ï¹(P) or r M ïƒ P + ï¹(P) . Some of the properties of this concept will be investigated. Some characterizations of ï¹-prime submodules will be given, and we show that under some assumptions prime submodules and ï¹-prime submodules are coincide.
Let R be a commutative ring with unity and let M be a left R-module. We define a proper submodule N of M to be a weakly prime if whenever r  R, x  M, 0  r x  N implies x  N or r  (N:M). In fact this concept is a generalization of the concept weakly prime ideal, where a proper ideal P of R is called a weakly prime, if for all a, b  R, 0  a b  P implies a  P or b  P. Various properties of weakly prime submodules are considered.
In this article, unless otherwise established, all rings are commutative with identity and all modules are unitary left R-module. We offer this concept of WN-prime as new generalization of weakly prime submodules. Some basic properties of weakly nearly prime submodules are given. Many characterizations, examples of this concept are stablished.
In this work we shall introduce the concept of weakly quasi-prime modules and give some properties of this type of modules.
Let R be a commutative ring with identity and M an unitary R-module. Let ï¤(M) be the set of all submodules of M, and ï¹: ï¤(M)  ï¤(M)  {ï¦} be a function. We say that a proper submodule P of M is end-ï¹-prime if for each ï¡ ïƒŽ EndR(M) and x  M, if ï¡(x)  P, then either x  P + ï¹(P) or ï¡(M) ïƒ P + ï¹(P). Some of the properties of this concept will be investigated. Some characterizations of end-ï¹-prime submodules will be given, and we show that under some assumtions prime submodules and end-ï¹-prime submodules are coincide.
Let be a commutative ring with identity, and be a unitary left R-module. In this paper we, introduce and study a new class of modules called pure hollow (Pr-hollow) and pure-lifting (Pr-lifting). We give a fundamental, properties of these concept. also, we, introduce some conditions under which the quotient and direct sum of Pr-lifting modules is Pr-lifting.
The concept of a small f- subm was presented in a previous study. This work introduced a concept of a hollow f- module, where a module is said to be hollow fuzzy when every subm of it is a small f- subm. Some new types of hollow modules are provided namely, Loc- hollow f- modules as a strength of the hollow module, where every Loc- hollow f- module is a hollow module, but the converse is not true. Many properties and characterizations of these concepts are proved, also the relationship between all these types is researched. Many important results that explain this relationship are demonstrated also several characterizations and properties related to these concepts are given.
Throughout this paper, three concepts are introduced namely stable semisimple modules, stable t-semisimple modules and strongly stable t-semisimple. Many features co-related with these concepts are presented. Also many connections between these concepts are given. Moreover several relationships between these classes of modules and other co-related classes and other related concepts are introduced.