In this paper we investigate the automatic recognition of emotion in text. We propose a new method for emotion recognition based on the PPM (PPM is short for Prediction by Partial Matching) character-based text compression scheme in order to recognize Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method is very effective when compared with traditional word-based text classification methods. We have also found that our method works best if the sizes of text in all classes used for training are similar, and that performance significantly improves with increased data.
Cuneiform symbols recognition represents a complicated task in pattern recognition and image analysis as a result of problems that related to cuneiform symbols like distortion and unwanted objects that associated with applying Binrizetion process like spots and writing lines. This paper aims to present new proposed algorithms to solve these problems for reaching uniform results about cuneiform symbols recognition that related to (select appropriate Binerized method, erased writing lines and spots) based on statistical Skewness measure, image morphology and distance transform concepts. The experiment results show that our proposed algorithms have excellent result and can be adopted
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreFace recognition is required in various applications, and major progress has been witnessed in this area. Many face recognition algorithms have been proposed thus far; however, achieving high recognition accuracy and low execution time remains a challenge. In this work, a new scheme for face recognition is presented using hybrid orthogonal polynomials to extract features. The embedded image kernel technique is used to decrease the complexity of feature extraction, then a support vector machine is adopted to classify these features. Moreover, a fast-overlapping block processing algorithm for feature extraction is used to reduce the computation time. Extensive evaluation of the proposed method was carried out on two different face ima
... Show MoreMR Younus, Nasaq Journal, 2022
يعد هذا النص أحد النصوص المسمارية المصادرة التي بحوزة المتحف العراقي، ويحمل الرقم المتحفي (235869)، قياساته )12،7x 6x 2،5سم). يتضمن مدخولات كميات من الشعير،أرخ النص الى عصر أور الثالثة (2012-2004 ق.م) و يعود الى السنة الثالثة من حكم الملك أبي-سين (2028-2004 ق.م)،أن الشخصية الرئيسة في هذا النص هو)با-اَ-كا مسمن الماشية( من مدينة أري-ساكرك، ومقارنته مع النصوص المسمارية المنشورة التي تعود الى أرشيفه يبلغ عددها (196) نصاً تضمنت نشاطاته م
... Show MoreIn modern times face recognition is one of the vital sides for computer vision. This is due to many reasons involving availability and accessibility of technologies and commercial applications. Face recognition in a brief statement is robotically recognizing a person from an image or video frame. In this paper, an efficient face recognition algorithm is proposed based on the benefit of wavelet decomposition to extract the most important and distractive features for the face and Eigen face method to classify faces according to the minimum distance with feature vectors. Faces94 data base is used to test the method. An excellent recognition with minimum computation time is obtained with accuracy reaches to 100% and recognition time decrease
... Show MoreAbu Firas al- Hamdani is one of the most prominent abbasid poets Who characterized their poetry with high artistic quality especially in his Romyate which blended the quality of feelings of grief, sorrow, longing and nostalgia that makes sensitive self conflict that stems with time from one hand and with place on the other hand. Because we are dealing with a poet lived west spatial coercive which it has been hurt him within a time conflict swinging between despair and some times patience and hope other times between the present and his painful reality also between the past and the beautiful times.
This researcher is to stand on this Romyat by monitoring effectiveness of the poetic text based on conflict between the presenc
Stylistics is the analysis of the language of literary texts integrated within various approaches to create a framework of different devices that describe and distinct a particular work. Therefore, feminist stylistics relied on theories of feminist criticism tries to present a counter- image of a woman both in language use and society, to draw attention , raise awareness and change ways that gender represents. Feminist stylistic analysis is related not only to describe sexism in a text, but also to analyze the way that point of view, agency, metaphor, and transitivity choices are unanticipatedly and carefully connected to issues of gender(Mills,1995:1) &nb
... Show MoreBack ground: Diabetic nephropathy is rapidly becoming the leading cause of end-stage renal disease (ESRD). The onset and course of DN can be ameliorated to a very significant degree if intervention institutes at a point very early in the course of the development of this complication.
Objective: The aim of this study was to characterize risk factors associated with nephropathy in type I diabetes and construct a module for early prediction of diabetic nephropathy (DN) by analyzing their risk factors.
Methods: Case control design of 400 patients with type I diabetes mellitus (IDDM), aged 19-45 years. The cases were 200 diabetic patients with overt protein urea while the controls were 200 diabetic patients with no protein urea or micr