In this paper we investigate the automatic recognition of emotion in text. We propose a new method for emotion recognition based on the PPM (PPM is short for Prediction by Partial Matching) character-based text compression scheme in order to recognize Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method is very effective when compared with traditional word-based text classification methods. We have also found that our method works best if the sizes of text in all classes used for training are similar, and that performance significantly improves with increased data.
The modern textual study researched the textuality of the texts and specified for that seven well-known standards, relying in all of that on the main elements of the text (the speaker, the text, and the recipient). This study was to investigate the textuality of philology, and the jurisprudence of the science of the text.
This work presents a symmetric cryptography coupled with Chaotic NN , the encryption algorithm process the data as a blocks and it consists of multilevel( coding of character, generates array of keys (weights),coding of text and chaotic NN ) , also the decryption process consists of multilevel (generates array of keys (weights),chaotic NN, decoding of text and decoding of character).Chaotic neural network is used as a part of the proposed system with modifying on it ,the keys that are used in chaotic sequence are formed by proposed key generation algorithm .The proposed algorithm appears efficiency during the execution time where it can encryption and decryption long messages by short time and small memory (chaotic NN offer capacity of m
... Show MoreFinger vein recognition and user identification is a relatively recent biometric recognition technology with a broad variety of applications, and biometric authentication is extensively employed in the information age. As one of the most essential authentication technologies available today, finger vein recognition captures our attention owing to its high level of security, dependability, and track record of performance. Embedded convolutional neural networks are based on the early or intermediate fusing of input. In early fusion, pictures are categorized according to their location in the input space. In this study, we employ a highly optimized network and late fusion rather than early fusion to create a Fusion convolutional neural network
... Show MoreAn Auto Crop method is used for detection and extraction signature, logo and stamp from the document image. This method improves the performance of security system based on signature, logo and stamp images as well as it is extracted images from the original document image and keeping the content information of cropped images. An Auto Crop method reduces the time cost associated with document contents recognition. This method consists of preprocessing, feature extraction and classification. The HSL color space is used to extract color features from cropped image. The k-Nearest Neighbors (KNN) classifier is used for classification.
The study consists of video clips of all cars parked in the selected area. The studied camera height is1.5 m, and the video clips are 18video clips. Images are extracted from the video clip to be used for training data for the cascade method. Cascade classification is used to detect license plates after the training step. Viola-jones algorithm was applied to the output of the cascade data for camera height (1.5m). The accuracy was calculated for all data with different weather conditions and local time recoding in two ways. The first used the detection of the car plate based on the video clip, and the accuracy was 100%. The second is using the clipped images stored in the positive file, based on the training file (XML file), where the ac
... Show MoreIn this paper an accurate Indian handwritten digits recognition system is
proposed. The system used three proposed method for extracting the most effecting
features to represent the characteristic of each digit. Discrete Wavelet Transform
(DWT) at level one and Fast Cosine Transform (FCT) is used for features extraction
from the thinned image. Besides that, the system used a standard database which is
ADBase database for evaluation. The extracted features were classified with KNearest
Neighbor (KNN) classifier based on cityblock distance function and the
experimental results show that the proposed system achieved 98.2% recognition
rate.
In this research, we tackled the idea of absence and what companies it of interpretations and human, textual, philosophical and explanatory concerns. We also tackled the features and drawing them and identifying and lighting them by Ali Abdunnabi Az-Zaidi and how he read them as an Iraqi who writes in order to express a social, intellectual, political and religious reality in some of its aspects. The idea of absence and what accompanies it of pain or heartbreak or human change was a rich subject for all the writers and authors in the Iraqi theatre, and Ali Abdunnabi Az-Zaidi was one of them and the closest and most affected by it, who deserves discussion, explanation and briefing. The research problem was looking for the nature of absenc
... Show More