Preferred Language
Articles
/
Mxf74I0BVTCNdQwCmSgN
Rationally Extending Modules and Strongly Quasi-Monoform Modules

An R-module M is called rationally extending if each submodule of M is rational in a direct summand of M. In this paper we study this class of modules which is contained in the class of extending modules, Also we consider the class of strongly quasi-monoform modules, an R-module M is called strongly quasi-monoform if every nonzero proper submodule of M is quasi-invertible relative to some direct summand of M. Conditions are investigated to identify between these classes. Several properties are considered for such modules

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Semihollow-Lifting Modules and Projectivity

Throughout this paper, T is a ring with identity and F is a unitary left module over T. This paper study the relation between semihollow-lifting modules and semiprojective covers. proposition 5 shows that If T is semihollow-lifting, then every semilocal T-module has semiprojective cover. Also, give a condition under which a quotient of a semihollow-lifting module having a semiprojective cover. proposition 2 shows that if K is a projective module. K is semihollow-lifting if and only if For every submodule A of K with K/( A) is hollow, then K/( A) has a semiprojective cover.

Scopus (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Wed Feb 08 2023
Journal Name
Iraqi Journal Of Science
FSFS Neotherian and Artinian Modules

Let
be an
module,
be a fuzzy soft module over
, and
be a fuzzy soft ring over
, then
is called FSFS module if and only if
is an
module. In this paper, we introduce the concept of
Noetherian and
Artinian modules and finally we investigate some basic properties of
Noetherian and
Artinian modules.

View Publication Preview PDF
Publication Date
Wed Mar 28 2018
Journal Name
Iraqi Journal Of Science
Essential-small Projective Modules

In this paper, we introduce the concept of e-small Projective modules as a generlization of Projective modules.

View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Discrete Mathematical Sciences And Cryptography
Semi-essentially prime modules

Let R be a commutative ring with 1 and M be a (left) unitary R – module. This essay gives generalizations for the notions prime module and some concepts related to it. We termed an R – module M as semi-essentially prime if annR (M) = annR (N) for every non-zero semi-essential submodules N of M. Given some of their advantages characterizations and examples, and we study the relation between these and some classes of modules.

Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Int. J. Nonlinear Anal. Appl.
Publication Date
Thu May 28 2020
Journal Name
Iraqi Journal Of Science
Fuzzy Maximal Sub-Modules

In this paper, we introduce and study the notions of fuzzy quotient module, fuzzy (simple, semisimple) module and fuzzy maximal submodule. Also, we give many basic properties about these notions.

Scopus (2)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
On Primary Multipliction Modules

Let R be a commutative ring with identity and M be a unitary R- module. We shall say that M is a primary multiplication module if every primary submodule of M is a multiplication submodule of M. Some of the properties of this concept will be investigated. The main results of this paper are, for modules M and N, we have M N and HomR (M, N) are primary multiplications R-modules under certain assumptions.

Crossref
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Early Childhood Special Education (int-jecse)
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
J-semi regular modules
Abstract<p>Let <italic>R</italic> be a ring with identity and let <italic>M</italic> be a left R-module. <italic>M</italic> is called J-semiregular module if every cyclic submodule of <italic>M</italic> is J-lying over a projective summand of <italic>M</italic>, The aim of this paper is to introduce properties of J-semiregular module Especially, we give characterizations of J-semiregular module. On the other hand, the notion of J-semi hollow modules is studied as a generalization of semi hollow modules, finally <italic>F</italic>-J-semiregular modules is studied as a generalization of <italic>F</italic>-semiregular modules.</p> ... Show More
Scopus (1)
Scopus Crossref
View Publication
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
On J–Lifting Modules
Abstract<p>Let R be a ring with identity and M is a unitary left R–module. M is called J–lifting module if for every submodule N of M, there exists a submodule K of N such that <inline-formula> <tex-math><?CDATA ${\rm{M}} = {\rm{K}} \oplus \mathop {\rm{K}}\limits^\prime,\>\mathop {\rm{K}}\limits^\prime \subseteq {\rm{M}}$?></tex-math> <math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block" overflow="scroll"> <mrow> <mi mathvariant="normal">M</mi> <mo>=</mo> <mi mathvariant="normal">K</mi></mrow></math></inline-formula></p> ... Show More
Scopus (4)
Scopus Crossref
View Publication