Increased downscaling of CMOS circuits with respect to feature size and threshold voltage has a result of dramatically increasing in leakage current. So, leakage power reduction is an important design issue for active and standby modes as long as the technology scaling increased. In this paper, a simultaneous active and standby energy optimization methodology is proposed for 22 nm sub-threshold CMOS circuits. In the first phase, we investigate the dual threshold voltage design for active energy per cycle minimization. A slack based genetic algorithm is proposed to find the optimal reverse body bias assignment to set of noncritical paths gates to ensure low active energy per cycle with the maximum allowable frequency at the optimal supply voltage. The second phase, determine the optimal reverse body bias that can be applied to all gates for standby power optimization at the optimal supply voltage determined from the first phase. Therefore, there exist two sets of gates and two reverse body bias values for each set. The reverse body bias is switched between these two values in response to the mode of operation. Experimental results are obtained for some ISCAS-85 benchmark circuits such as 74L85, 74283, ALU74181, and 16 bit RCA. The optimized circuits show significant energy saving ranged (from 14.5% to 42.28%) and standby power saving ranged (from 62.8% to 67%).
Abstract: This study aims to investigate the backscattering electron coefficient for SixGe1-x/Si heterostructure sample as a function of primary electron beam energy (0.25-20 keV) and Ge concentration in the alloy. The results obtained have several characteristics that are as follows: the first one is that the intensity of the backscattered signal above the alloy is mainly related to the average atomic number of the SixGe1-x alloy. The second feature is that the backscattering electron coefficient line scan shows a constant value above each layer at low primary electron energies below 5 keV. However, at 5 keV and above, a peak and a dip appeared on the line scan above Si-Ge alloy and Si, respectively, close to the interfacing line
... Show MoreThe influence of dye laser Rhodamine 6G (R6G) on the molecular structure of silica aerogel prepared by normal drying method is reported. The study also tests the effect of dye concentration on morphological and physical properties. Fourier Transform Infrared Spectroscopy (FTIR) was used to examine this effect, in addition to Field Emission Scanning Electron Microscopy (FESEM), contact angle, and surface area measurement. It was found from FTIR data that the dye laser stays with the inner structure of samples and, at high concentration, it gives a good influence by reducing (OH) band and increasing (CH) band, leading to changing the contact angle from (123á´¼) to (145á´¼). Whereas particle size varied from 22 n
... Show MoreThe effect of high energy radiation on the energy gap of compound semiconductor Silicon Carbide (SiC) are viewed. Emphasis is placed on those effects which can be interpreted in terms of energy levels. The goal is to develop semiconductors operating at high temperature with low energy gaps by induced permanent damage in SiC irradiated by gamma source. TEACO2 laser used for producing SiC thin films. Spectrophotometer lambda - UV, Visible instrument is used to determine energy gap (Eg). Co-60, Cs-137, and Sr-90 are used to irradiate SiC samples for different time of irradiation. Possible interpretation of the changing in Eg values as the time of irradiation change is discussed
A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.
Background: Machine learning relies on a hybrid of analytics, including regression analyses. There have been no attempts to deploy a sinusoidal transformation of data to enhance linear regression models.
Objectives: We aim to optimize linear models by implementing sinusoidal transformation to minimize the sum of squared error.
Methods: We implemented non-Bayesian statistics using SPSS and MatLab. We used Excel to generate 30 trials of linear regression models, and each has 1,000 observations. We utilized SPSS linear regression, Wilcoxon signed-rank test, and Cronbach’s alpha statistics to evaluate the performance of the optimization model. Results: The sinusoidal
As a result of rapid industrialization and population development, toxic chemicals have been introduced into water systems in recent decades. Because of its excellent efficiency and simple design, the three-dimensional (3D) electro-Fenton method has been used for the treatment of wastewater. The goal of the current study is to explore the efficiency of phenol removal by the 3D electro-Fenton process, which is one of the advanced oxidation processes (AOPs). In the present work, the effect of the addition of granular activated carbon (GAC) particles to the electro-Fenton system as the third electrode would be investigated in the presence of graphite as the anode and nickel foam as the cathode, which is the source of electro-generated hydrogen
... Show MoreBackground: Rheumatoid arthritis (RA) disease activity plays a central role in causing disability both directly and via indirect effects mediated through joint damage. Evaluation of RA disease activity is therefore important to predict the outcome and effectiveness of therapeutic interventions during follow-up. Clinical disease activity index (CDAI) is new simple tool for measurement of disease activity.
Objectives: To assess validity and reliability of CDAI in comparison to disease activity score-28 joints (DAS28) in Iraqi patients with active RA.
Patients and Methods: Sixty nine Iraqi RA patients were included in this study. All patients were fulfilling the ACR classification criteria and active. Full history was taken and comple
The experiment was conducted at field of garden of Department of Biology, Collage
of Education (Ibn-Al-Haitham) University of Baghdad during winter season of 2009-2010.
The aim of present study is the effect of growth regulator Gibberellins by using two
concentrations (100, 200) ppm and also Thiamine in two concentrations (10, 50) ppm, on the
some yield component characters and active component of volatile oil Cumin (Cuminum
cyminum L.).
The results showed that GA3 in (100) ppm increased the yield component, protein
concentration and increased in Cuminaldehyde, Perillaldehyde and Thyoml concentration.
The results showed that the best concentration was (50) ppm of Thiamine showed an
increasing concentratio