In this paper, a new technique is offered for solving three types of linear integral equations of the 2nd kind including Volterra-Fredholm integral equations (LVFIE) (as a general case), Volterra integral equations (LVIE) and Fredholm integral equations (LFIE) (as special cases). The new technique depends on approximating the solution to a polynomial of degree and therefore reducing the problem to a linear programming problem(LPP), which will be solved to find the approximate solution of LVFIE. Moreover, quadrature methods including trapezoidal rule (TR), Simpson 1/3 rule (SR), Boole rule (BR), and Romberg integration formula (RI) are used to approximate the integrals that exist in LVFIE. Also, a comparison between those
... Show MoreIn this paper a modified approach have been used to find the approximate solution of ordinary delay differential equations with constant delay using the collocation method based on Bernstien polynomials.
A new, Simple, sensitive and accurate spectrophotometric methods have been developed for the determination of sulfamethoxazole (SMZ) drug in pure and dosage forms. This method based on the reaction of sulfamethoxazole (SMZ) with 1,2-napthoquinone-4-sulphonic acid (NQS) to form Nalkylamono naphthoquinone by replacement of the sulphonate group of the naphthoquinone sulphonic acid by an amino group. The colored chromogen shows absorption maximum at 460 nm. The optimum conditions of condensation reaction forms were investigated by (1) univariable method, by optimizing the effect of experimental variables (different bases, reagent concentration, borax concentration and reaction time), (2) central composite design (CCD) including the effect of
... Show MoreIn this paper, a new form of 2D-plane curves is produced and graphically studied. The name of my daughter "Noor" has been given to this curve; therefore, Noor term describes this curve whenever it is used in this paper. This curve is a form of these opened curves as it extends in the infinity along both sides from the origin point. The curve is designed by a circle/ ellipse which are drawing curvatures that tangent at the origin point, where its circumference is passed through the (0,2a). By sharing two vertical lined points of both the circle diameter and the major axis of the ellipse, the parametric equation is derived. In this paper, a set of various cases of Noor curve are graphically studied by two curvature cases;
... Show MoreIn this article, a numerical method integrated with statistical data simulation technique is introduced to solve a nonlinear system of ordinary differential equations with multiple random variable coefficients. The utilization of Monte Carlo simulation with central divided difference formula of finite difference (FD) method is repeated n times to simulate values of the variable coefficients as random sampling instead being limited as real values with respect to time. The mean of the n final solutions via this integrated technique, named in short as mean Monte Carlo finite difference (MMCFD) method, represents the final solution of the system. This method is proposed for the first time to calculate the numerical solution obtained fo
... Show MoreIn this paper the nuclear structure of some of Si-isotopes namely, 28,32,36,40Si have been studied by calculating the static ground state properties of these isotopes such as charge, proton, neutron and mass densities together with their associated rms radii, neutron skin thicknesses, binding energies, and charge form factors. In performing these investigations, the Skyrme-Hartree-Fock method has been used with different parameterizations; SkM*, S1, S3, SkM, and SkX. The effects of these different parameterizations on the above mentioned properties of the selected isotopes have also been studied so as to specify which of these parameterizations achieves the best agreement between calculated and experimental data. It can be ded
... Show MoreA new efficient Two Derivative Runge-Kutta method (TDRK) of order five is developed for the numerical solution of the special first order ordinary differential equations (ODEs). The new method is derived using the property of First Same As Last (FSAL). We analyzed the stability of our method. The numerical results are presented to illustrate the efficiency of the new method in comparison with some well-known RK methods.
Reservoir characterization plays a crucial role in comprehending the distribution of formation properties and fluids within heterogeneous reservoirs. This knowledge is instrumental in constructing an accurate three-dimensional model of the reservoir, facilitating predictions regarding porosity, permeability, and fluid flow distribution. Among the various methods employed for reservoir characterization, the hydraulic flow unit stands out as a widely adopted approach. By effectively subdividing the reservoir into distinct zones, each characterized by unique petrophysical and geological properties, hydraulic flow units enable comprehensive reservoir analysis. The concept of the flow unit is closely tied to the flow zone indicator, a cr
... Show More