Significant advancements in nanoscale material efficiency optimization have made it feasible to substantially adjust the thermoelectric transport characteristics of materials. Motivated by the prediction and enhanced understanding of the behavior of two-dimensional (2D) bilayers (BL) of zirconium diselenide (ZrSe2), hafnium diselenide (HfSe2), molybdenum diselenide (MoSe2), and tungsten diselenide (WSe2), we investigated the thermoelectric transport properties using information generated from experimental measurements to provide inputs to work with the functions of these materials and to determine the critical factor in the trade-off between thermoelectric materials. Based on the Boltzmann transport equation (BTE) and Barden-Shockley deformation potential (DP) theory, we carried out a series of investigative calculations related to the thermoelectric properties and characterization of these materials. The calculated dimensionless figure of merit (ZT) values of 2DBL-MSe2 (M = Zr, Hf, Mo, W) at room temperature were 3.007, 3.611, 1.287, and 1.353, respectively, with convenient electronic densities. In addition, the power factor is not critical in the trade-off between thermoelectric materials but it can indicate a good thermoelectric performance. Thus, the overall thermal conductivity and power factor must be considered to determine the preference of thermoelectric materials.
The concept of a 2-Absorbing submodule is considered as an essential feature in the field of module theory and has many generalizations. This articale discusses the concept of the Extend Nearly Pseudo Quasi-2-Absorbing submodules and their relationship to the 2-Absorbing submodule, Quasi-2-Absorbing submodule, Nearly-2-Absorbing submodule, Pseudo-2-Absorbing submodule, and the rest of the other concepts previously studied. The relationship between them has been studied, explaining that the opposite is not true and that under certain conditions the opposite becomes true. This article aims to study this concept and gives the most important propositions, characterizations, remarks, examples, lemmas, and observations related to it. In the en
... Show MoreLet be a module over a commutative ring with identity. In this paper we intoduce the concept of Strongly Pseudo Nearly Semi-2-Absorbing submodule, where a proper submodule of an -module is said to be Strongly Pseudo Nearly Semi-2-Absorbing submodule of if whenever , for implies that either or , this concept is a generalization of 2_Absorbing submodule, semi 2-Absorbing submodule, and strong form of (Nearly–2–Absorbing, Pseudo_2_Absorbing, and Nearly Semi–2–Absorbing) submodules. Several properties characterizations, and examples concerning this new notion are given. We study the relation between Strongly Pseudo Nearly Semei-2-Absorbing submodule and (2_Absorbing, Nearly_2_Absorbing, Pseudo_2_Absorbing, and Nearly S
... Show MoreThe concept of the Extend Nearly Pseudo Quasi-2-Absorbing submodules was recently introduced by Omar A. Abdullah and Haibat K. Mohammadali in 2022, where he studies this concept and it is relationship to previous generalizationsm especially 2-Absorbing submodule and Quasi-2-Absorbing submodule, in addition to studying the most important Propositions, charactarizations and Examples. Now in this research, which is considered a continuation of the definition that was presented earlier, which is the Extend Nearly Pseudo Quasi-2-Absorbing submodules, we have completed the study of this concept in multiplication modules. And the relationship between the Extend Nearly Pseudo Quasi-2-Absorbing submodule and Extend Nearly Pseudo Quasi-2-Abs
... Show MoreA complete metric space is a well-known concept. Kreyszig shows that every non-complete metric space can be developed into a complete metric space , referred to as completion of .
We use the b-Cauchy sequence to form which “is the set of all b-Cauchy sequences equivalence classes”. After that, we prove to be a 2-normed space. Then, we construct an isometric by defining the function from to ; thus and are isometric, where is the subset of composed of the equivalence classes that contains constant b-Cauchy sequences. Finally, we prove that is dense in , is complete and the uniqueness of is up to isometrics
Let be a module over a commutative ring with identity. Before studying the concept of the Strongly Pseudo Nearly Semi-2-Absorbing submodule, we need to mention the ideal and the basics that you need to study the concept of the Strongly Pseudo Nearly Semi-2-Absorbing submodule. Also, we introduce several characteristics of the Strongly Pseudo Nearly Semi-2-Absorbing submodule in classes of multiplication modules and other types of modules. We also had no luck because the ideal is not a Strongly Pseudo Nearly Semi-2-Absorbing ideal. Also, it is noted that is the Strongly Pseudo Nearly Semi-2-Absorbing ideal under several conditions, which is this faithful module, projective module, Z-regular module and content module and non-si
... Show MoreIn a recent study, a special type of plane overpartitions known as k-rowed plane overpartitions has been studied. The function denotes the number of plane overpartitions of n with a number of rows at most k. In this paper, we prove two identities modulo 8 and 16 for the plane overpartitions with at most two rows. We completely specify the modulo 8. Our technique is based on expanding each term of the infinite product of the generating function of the modulus 8 and 16 and in which the proofs of the key results are dominated by an intriguing relationship between the overpartitions and the sum of divisors, which reveals a considerable link among these functions modulo powers of 2.
Abstract
These experiments seek to investigate the effects of the fixed variations to the basic box plot on subjects' judgments of the box lengths. The study consists of two experiments, were constructed as an extension to the experiments carried out previously by Hussin, M.M. (1989, 2006). Subjects were asked to judge what percentage the shorter represented of the longer length in pairs of box lengths and give an estimate of percentage, one being a standard plot and the other being of a different box length and also varying with respect to other elements such as, box width or whisker length. When he (1989) suggested in the future research points (1, 2), the changing length of the st
... Show MoreIn this study the effect of fiber volume fraction of the glass fiber on the thermal conductivity of the polymer composite material was studied. Different fiber volume fraction of glass fibers were used (3%, 6%, 9%, 12%, and 15%). Specimens were made from polyester which reinforced with glass fibers .The fibers had two arrangements according to the direction of the thermal flow. In the first arrangement the fibers were parallel to the direction of the thermal flow, while the second arrangement was perpendicular; Lee's disk method was used for testing the specimens. The experimental results proved that the values of the thermal conductivity of the specimens was higher when the fibers arranged in parallel direction than that when the fibers
... Show More