Inherent fluctuations in the availability of energy from renewables, particularly solar, remain a substantial impediment to their widespread deployment worldwide. Employing phase-change materials (PCMs) as media, saving energy for later consumption, offers a promising solution for overcoming the problem. However, the heat conductivities of most PCMs are limited, which severely limits the energy storage potential of these materials. This study suggests employing circular fins with staggered distribution to achieve improved thermal response rates of PCM in a vertical triple-tube heat exchanger involving two opposite flow streams of the heat-transfer fluid (HTF). Since heat diffusion is not the same at various portions of the PCM unit, different fin configurations, fin dimensions and HTF flow boundary conditions were explored using computational studies of melting in the PCM triple-tube system. Staggered configuration of fin distribution resulted in significant increases in the rates of PCM melting. The results indicate that the melting rate and heat charging rate could be increased by 37.2 and 59.1%, respectively, in the case of staggered distribution. Furthermore, the use of lengthy fins with smaller thickness in the vertical direction of the storage unit resulted in a better positive role of natural convection; thus, faster melting rates were achieved. With fin dimensions of 0.666 mm × 15 mm, the melting rate was found to be increased by 23.6%, when compared to the base case of 2 mm × 5 mm. Finally, it was confirmed that the values of the Reynolds number and inlet temperatures of the HTF had a significant impact on melting time savings when circular fins of staggered distribution were included.
Abstract
The purpose of the present paper is to light on the relationship between jobs design, analysis and its reflections on reinforcing workers' vocational adjustment. The present paper aims to accomplish cognitive and applied goals, top of which, test of functional analysis ability to have effect upon workers' vocational adjustment via job design directly and indirectly owning to the virtual factor practiced by these practices on the sought organization. The problem of the present paper comes with many, the most important is the of how to bolster and back up worker's technical adjustment through good and accurate design for the job.
Based on this problem and goals as to expla
... Show MoreThe education, especially higher education, is an essentially factor in the progress of any society, if we consider the higher education, represents the top of the education`s pyramid which take part in developing the human resources and provide the human staff to raise the productive efficiency, and improve the social , economic level
In order to face the increasing importance of higher education, great capabilities and expenditures must be available in a continous way, such expe
... Show MoreBackground: Marginal adaptation is critical for long – term success of crown and bridge restoration. Computer aided design / computer aided manufacture (CAD/ CAM) system is gaining more importance in the fabrication of dental restoration. Objective: The aim of this study is to evaluate the effect of crystallization firing on the vertical marginal gap of IPS. emax CAD crowns which fabricated with two different CAD/CAM systems .Materials and Methods: Twenty IPS e.max CAD crowns were fabricated. We had two major groups (A, B) (10 crowns for each group) according to the CAD/CAM system being used: Group A: fabricated with Imes - Icore CAD/CAM system; Group B: fabricated with In Lab Sirona CAD/CAM system. Each group was subdivided into two s
... Show MoreThis study offers numerical simulation results using the ABAQUS/CAE version 2019 finite element computer application to examine the performance, and residual strength of eight recycle aggregate RC one-way slabs. Six strengthened by NSM CFRP plates were presented to study the impact of several parameters on their structural behavior. The experimental results of four selected slabs under monotonic load, plus one slab under repeated load, were validated numerically. Then the numerical analysis was extended to different parameters investigation, such as the impact of added CFRP length on ultimate load capacity and load-deflection response and the impact of concrete compressive strength value on the structural performance of
... Show More
Shear and compressional wave velocities, coupled with other petrophysical data, are vital in determining the dynamic modules magnitude in geomechanical studies and hydrocarbon reservoir characterization. But, due to field practices and high running cost, shear wave velocity may not available in all wells. In this paper, a statistical multivariate regression method is presented to predict the shear wave velocity for Khasib formation - Amara oil fields located in South- East of Iraq using well log compressional wave velocity, neutron porosity and density. The accuracy of the proposed correlation have been compared to other correlations. The results show that, the presented model provides accurate
... Show MoreThe purpose of this paper is to preparing exercises for using the (Blazepod) device for advanced basketball players, and then identifying the effect of using the (Blazepod) device in developing some of the player's defensive movement for advanced basketball players. 12 players from the Adhamiya Sports Club, the category of applicants for the 2022/2023 sports year, where they were chosen in a deliberate manner from the community of origin represented by clubs, and the researchers used the defender player's movement test, and the results of the study showed that the special exercises prepared by the researcher using the (Blazepod) device affected the development Defensive skills (the movement of the defending player) greatly increased among a
... Show MoreRelease of industrial effluents comprising dyes in water bodies is one of the foremost causes of water pollution. Therefore, the proper and proficient treatment of these dyes contaminated left-over material before their release is crucial. Herein, an eco-friendly biological macromolecule Gum-Acacia (GA) integrated Fe3O4 nanoparticles composite hydrogel was manufactured via co-precipitation technique for effective adsorption of Congo red (CR) dye existing in water bodies. The as-prepared magnetic GA/Fe3O4 composite hydrogel was characterized by FTIR, XRD, EDX, VSM, SEM, and BET techniques. These studies discovered the fruitful fabrication of biodegradable magnetic GA/Fe3O4 composite hydrogel possessing porous structure with large surface are
... Show MoreIn this paper , concrete micro-piles were used to improve the bearing capacity of the soil which is supporting the shallow foundation by using groups of (4; 6 and 9)bored short micro-piles which have, (D=0.125m and D=0.1m), and length to diameter ratio (L/D) equal to (6; 10 and 12) respectively. To calculate the bearing capacity of the micro-piles,(Tomlinson) and (Lamda) methods were used; also the soil properties were taken from Al-Muthana airport,(Al-Qyssi,2001) [1]. The results show that; increasing the number of piles and/ or the diameters and lengths; and the interaction between the bearing capacity of the shallow foundation with the bearing capacity of the pile group which leads to increasing the strength against the external loads
... Show More