Wildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (MobileNet) was trained to identify key features of various satellite images that contained fire or without fire. Then, the trained system is used to classify new satellite imagery and sort them into fire or no fire classes. A cloud-based development studio from Edge Impulse Inc. is used to create a NN model based on the transferred learning algorithm. The effects of four hyperparameters are assessed: input image resolution, depth multiplier, number of neurons in the dense layer, and dropout rate. The computational cost is evaluated based on the simulation of deploying the neural network model on an Arduino Nano 33 BLE device, including Flash usage, peak random access memory (RAM) usage, and network inference time. Results supported that the dropout rate only affects network prediction performance; however, the number of neurons in the dense layer had limited effects on performance and computational cost. Additionally, hyperparameters such as image size and network depth significantly impact the network model performance and the computational cost. According to the developed benchmark network analysis, the network model MobileNetV2, with 160 × 160 pixels image size and 50% depth reduction, shows a good classification accuracy and is about 70% computationally lighter than a full-depth network. Therefore, the proposed methodology can effectively design an ML application that instantly and efficiently analyses imagery from a spacecraft/weather balloon for the detection of wildfires without the need of an earth control centre.
Ag2O (Silver Oxide) is an important p-type (in chasm to most oxides which were n-type), with a high conductivity semiconductor. From the optical absorbance data, the energy gap value of the Ag2O thin films was 1.93 eV, where this value substantially depends on the production method, vacuum evaporation of silver, and optical properties of Ag2O thin films are also affected by the precipitation conditions. The n-type and p-type silicon substrates were used with porous silicon wafers to precipitate ±125 nm, as thick Ag2O thin film by thermal evaporation techniques in vacuum and via rapid thermal oxidation of 400oC and oxidation time 95 s, then characterized by measurement of
... Show MoreThe Matching and Mosaic of the satellite imagery play an essential role in many remote sensing and image processing projects. These techniques must be required in a particular step in the project, such as remotely change detection applications and the study of large regions of interest. The matching and mosaic methods depend on many image parameters such as pixel values in the two or more images, projection system associated with the header files, and spatial resolutions, where many of these methods construct the matching and mosaic manually. In this research, georeference techniques were used to overcome the image matching task in semi automotive method. The decision about the quality of the technique can be considered i
... Show MoreThis research shows the issues of Ibn Hisham's illusion in its leadership of the grammarians; As Ibn Hisham attributed - during his presentation of grammatical issues - grammatical opinions to a number of grammarians claiming them in them, and after referring to the main concepts that pertain to those grammarians, we found that Ibn Hisham had delusional in those allegations, in addition to that clarifying the terms illusion and claim in the two circles of language And the terminology, and perhaps the most prominent result in this research is that he worked to investigate these issues by referring to their original sources, with an explanation of the illusions of Ibn Hisham in his attribution to these issues.
Recent growth in transport and wireless communication technologies has aided the evolution of Intelligent Transportation Systems (ITS). The ITS is based on different types of transportation modes like road, rail, ocean and aviation. Vehicular ad hoc network (VANET) is a technology that considers moving vehicles as nodes in a network to create a wireless communication network. VANET has emerged as a resourceful approach to enhance the road safety. Road safety has become a critical issue in recent years. Emergency incidents such as accidents, heavy traffic and road damages are the main causes of the inefficiency of the traffic flow. These occurrences do not only create the congestion on the road but also increase the fuel consumption and p
... Show MoreWithin this work, to promote the efficiency of organic-based solar cells, a series of novel A-π-D type small molecules were scrutinised. The acceptors which we designed had a moiety of N, N-dimethylaniline as the donor and catechol moiety as the acceptor linked through various conjugated π-linkers. We performed DFT (B3LYP) as well as TD-DFT (CAM-B3LYP) computations using 6-31G (d,p) for scrutinising the impact of various π-linkers upon optoelectronic characteristics, stability, and rate of charge transport. In comparison with the reference molecule, various π-linkers led to a smaller HOMO–LUMO energy gap. Compared to the reference molecule, there was a considerable red shift in the molecules under study (A1–A4). Therefore, based on
... Show MoreThe modification of hydrophobic rock surfaces to the water-wet state via nanofluid treatment has shown promise in enhancing their geological storage capabilities and the efficiency of carbon dioxide (CO2) and hydrogen (H2) containment. Despite this, the specific influence of silica (SiO2) nanoparticles on the interactions between H2, brine, and rock within basaltic formations remains underexplored. The present study focuses on the effect of SiO2 nanoparticles on the wettability of Saudi Arabian basalt (SAB) under downhole conditions (323 K and pressures ranging from 1 to 20 MPa) by using the tilted plate technique to measure the contact angles between H2/brine and the rock surfaces. The findings reveal that the SAB's hydrophobicity intensif
... Show MoreThis study presents the debonding propagation in single NiTi wire shape memory alloy into linear low-density polyethylene matrix composite the study of using the pull-out test. The aim of this study is to investigate the pull-out tests to check the interfacial strength of the polymer composite in two cases, with activation NiTinol wire and without activation. In this study, shape memory alloy NiTinol wire 2 mm diameter and linear fully annealed straight shape were used. The study involved experimental and finite element analysis and eventually comparison between them. This pull-out test is considered a substantial test because its results have a relation with behavior of smart composite materials. The pull-out test was carried out by a u
... Show More