Researcher Image
Bahaa Ansaf - Bahaa Ansaf
PhD - professor
Al-Khwarizmi College of Engineering , Department of Mechatronics Engineering
[email protected]
Teaching materials
Material
College
Department
Stage
Download
R1
كلية هندسة الخوارزمي
هندسة الميكاترونكس
Stage 1
Publication Date
Thu Apr 20 2023
Journal Name
Fire
An Efficient Wildfire Detection System for AI-Embedded Applications Using Satellite Imagery
...Show More Authors

Wildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob

... Show More
View Publication
Scopus (22)
Crossref (22)
Scopus Clarivate Crossref
Publication Date
Sat Mar 01 2025
Journal Name
Coed
Engaging High School Teachers with Artificial Intelligence Concepts, Applications, and Developments
...Show More Authors

This work analyzes the effectiveness of an artificial intelligence (AI) community- building workshop designed for high school teachers and it focuses on contemporary issues related to AI concepts and applications. A group of high school teachers from local education districts attended a one-day AI hands-on workshop at our university. The workshop included several AI-related topics and hands-on examples and exercises aiming to introduce AI concepts and tools relevant to pre-college education. The participating teachers were expected to become a part of a collaborative network created to design, develop, and implement novel AI learning modules for high school students. Initial and a post-training surveys have been used to measure the

... Show More
View Publication
Crossref
Publication Date
Tue Jun 18 2024
Journal Name
2023 Asee Annual Conference & Exposition Proceedings
Study of Artificial Intelligence Computing Devices for Undergraduate Computer Science and Engineering Labs
...Show More Authors

View Publication
Crossref
Publication Date
Sat Aug 21 2021
Journal Name
Electronics
An Efficient Distributed Elliptic Positioning for Underground Remote Sensing
...Show More Authors

Remote surveying of unknown bound geometries, such as the mapping of underground water supplies and tunnels, remains a challenging task. The obstacles and absorption in media make the long-distance telecommunication and localization process inefficient due to mobile sensors’ power limitations. This work develops a new short-range sequential localization approach to reduce the required amount of signal transmission power. The developed algorithm is based on a sequential localization process that can utilize a multitude of randomly distributed wireless sensors while only employing several anchors in the process. Time delay elliptic and frequency range techniques are employed in developing the proposed algebraic closed-form solution.

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Oct 19 2021
Journal Name
Biochem
A Neuro-Fuzzy Technique for the Modeling of β-Glucosidase Activity from Agaricus bisporus
...Show More Authors

This paper proposes a neuro-fuzzy system to model β-glucosidase activity based on the reaction’s pH level and temperature. The developed fuzzy inference system includes two input variables (pH level and temperature) and one output (enzyme activity). The multi-input fuzzy inference system was developed in two stages: first, developing a single input-single output fuzzy inference system for each input variable (pH, temperature) separately, using the robust adaptive network-based fuzzy inference system (ANFIS) approach. The neural network learning techniques were used to tune the membership functions based on previously published experimental data for β-glucosidase. Second, each input’s optimized membership functions from the ANF

... Show More
View Publication
Scopus Crossref
No Events Found