This paper is concerned with introducing and studying the o-space by using out degree system (resp. i-space by using in degree system) which are the core concept in this paper. In addition, the m-lower approximations, the m-upper approximations and ospace and i-space. Furthermore, we introduce near supraopen (near supraclosed) d. g.'s. Finally, the supra-lower approximation, supraupper approximation, supra-accuracy are defined and some of its properties are investigated.
Fibrewise topological spaces theory is a relatively new branch of mathematics, less than three decades old, arisen from algebraic topology. It is a highly useful tool and played a pivotal role in homotopy theory. Fibrewise topological spaces theory has a broad range of applications in many sorts of mathematical study such as Lie groups, differential geometry and dynamical systems theory. Moreover, one of the main objects, which is considered in fibrewise topological spaces theory is connectedness. In this regard, we of the present study introduce the concept of connected fibrewise topological spaces and study their main results.
The aim of this paper is to introduce and study some of the Fibrewise minimal regular,Fibrewise maximal regular, Fibrewise minimal completely regular, Fibrewise maximal completely regular, Fibrewise minimal normal, Fibrewise maximal normal, Fibrewise minimal functionally normal, and Fibrewise maximal functionally normal. This is done by providing some definitions of the concepts and examples related to them, as well as discussing some properties and mentioning some explanatory diagrams for those concepts.
(Use of models of game theory in determining the policies to maximize profits for the Pepsi Cola and Coca-Cola in the province of Baghdad)
Due to the importance of the theory of games especially theories of oligopoly in the study of the reality of competition among companies or governments and others the researcher linked theories of oligopoly to Econometrics to include all the policies used by companies after these theories were based on price and quantity only the researcher applied these theories to data taken from Pepsi Cola and Coca-Cola In Baghdad Steps of the solution where stated for the models proposed and solutions where found to be balance points is for the two companies according to the princi
... Show MoreThe aim of the present work is to define a new class of closed soft sets in soft closure spaces, namely, generalized closed soft sets (
R. Vasuki [1] proved fixed point theorems for expansive mappings in Menger spaces. R. Gujetiya and et al [2] presented an extension of the main result of Vasuki, for four expansive mappings in Menger space. In this article, an important lemma is given to prove that the iteration sequence is Cauchy under suitable condition in Menger probabilistic G-metric space (shortly, MPGM-space). And then, used to obtain three common fixed point theorems for expansive type mappings.
<p>In this paper, we prove there exists a coupled fixed point for a set- valued contraction mapping defined on X× X , where X is incomplete ordered G-metric. Also, we prove the existence of a unique fixed point for single valued mapping with respect to implicit condition defined on a complete G- metric.</p>
The idea of ech fuzzy soft bi-closure space ( bicsp) is a new one, and its basic features are defined and studied in [1]. In this paper, separation axioms, namely pairwise, , pairwise semi-(respectively, pairwise pseudo and pairwise Uryshon) - fs bicsp's are introduced and studied in both ech fuzzy soft bi-closure space and their induced fuzzy soft bitopological spaces. It is shown that hereditary property is satisfied for , with respect to ech fuzzy soft bi-closure space but for other mentioned types of separations axioms, hereditary property satisfies for closed subspaces of ech fuzzy soft bi-closure space.
Volterra – Fredholm integral equations (VFIEs) have a massive interest from researchers recently. The current study suggests a collocation method for the mixed Volterra - Fredholm integral equations (MVFIEs)."A point interpolation collocation method is considered by combining the radial and polynomial basis functions using collocation points". The main purpose of the radial and polynomial basis functions is to overcome the singularity that could associate with the collocation methods. The obtained interpolation function passes through all Scattered Point in a domain and therefore, the Delta function property is the shape of the functions. The exact solution of selective solutions was compared with the results obtained
... Show MoreThe mixed-spin ferrimagnetic Ising system consists of two-dimensional sublattices A and B with spin values and respectively .By used the mean-field approximation MFA of Ising model to find magnetism( ).In order to determined the best stabile magnetism , Gibbs free energy employ a variational method based on the Bogoliubov inequality .The ground-state (Phase diagram) structure of our system can easily be determined at , we find six phases with different spins values depend on the effect of a single-ion anisotropies .these lead to determined the second , first orders transition ,and the tricritical points as well as the compensation phenomenon .