Preferred Language
Articles
/
LBdoZ5IBVTCNdQwCLK_5
Practically Robust Fixed-Time Convergent Sliding Mode Control for Underactuated Aerial Flexible JointRobots Manipulators
...Show More Authors

The control of an aerial flexible joint robot (FJR) manipulator system with underactuation is a difficult task due to unavoidable factors, including, coupling, underactuation, nonlinearities, unmodeled uncertainties, and unpredictable external disturbances. To mitigate those issues, a new robust fixed-time sliding mode control (FxTSMC) is proposed by using a fixed-time sliding mode observer (FxTSMO) for the trajectory tracking problem of the FJR attached to the drones system. First, the underactuated FJR is comprehensively modeled and converted to a canonical model by employing two state transformations for ease of the control design. Then, based on the availability of the measured states, a cascaded FxTSMO (CFxTSMO) is constructed to estimate the unmeasurable variables and lumped disturbances simultaneously in fixed-time, and to effectively reduce the estimation noise. Finally, the FxTSMC scheme for a high-order underactuated FJR system is designed to guarantee that the system tracking error approaches to zero within a fixed-time that is independent of the initial conditions. The fixed-time stability of the closed-loop system of the FJR dynamics is mathematically proven by the Lyapunov theorem. Simulation investigations and hardware tests are performed to demonstrate the efficiency of the proposed controller scheme. Furthermore, the control technique developed in this research could be implemented to the various underactuated mechanical systems (UMSs), like drones, in a promising way.

Scopus Clarivate Crossref
View Publication
Publication Date
Tue Mar 31 2015
Journal Name
Al-khwarizmi Engineering Journal
Intelligent H2/H∞ Robust Control of an Active Magnetic Bearings System
...Show More Authors

Abstract

Robust controller design requires a proper definition of uncertainty bounds. These uncertainty bounds are commonly selected randomly and conservatively for certain stability, without regard for controller performance.  This issue becomes critically important for multivariable systems with high nonlinearities, as in Active Magnetic Bearings (AMB) System. Flexibility and advanced learning abilities of intelligent techniques make them appealing for uncertainty estimation. The aim of this paper is to describe the development of robust H2/H controller for AMB based on intelligent estimation of uncertainty bounds using Adaptive Neuro Fuzzy Inference System (ANFIS).  Simulatio

... Show More
View Publication Preview PDF
Publication Date
Wed May 10 2023
Journal Name
Journal Of Engineering
Vibration Control Analysis of a Smart Flexible Cantilever Beam Using Smart Material
...Show More Authors

This paper features the modeling and design of a pole placement and output Feedback control technique for the Active Vibration Control (AVC) of a smart flexible cantilever beam for a Single Input Single Output (SISO) case. Measurements and actuation actions done by using patches of piezoelectric layer, it is bonded to the master structure as sensor/actuator at a certain position of the cantilever beam.
The smart structure is modeled based on the concept of piezoelectric theory, Bernoulli -Euler beam theory, using Finite Element Method (FEM) and the state space techniques. The number of modes is reduced using the controllability and observability grammians retaining the first three
dominant vibratory modes, and for the reduced syste

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Block Method for SolvingState-Space Equations of Linear Continuous-Time Control Systems
...Show More Authors

This paper presents a newly developed method with new algorithms to find the numerical solution of nth-order state-space equations (SSE) of linear continuous-time control system by using block method. The algorithms have been written in Matlab language. The state-space equation is the modern representation to the analysis of continuous-time system. It was treated numerically to the single-input-single-output (SISO) systems as well as multiple-input-multiple-output (MIMO) systems by using fourth-order-six-steps block method. We show that it is possible to find the output values of the state-space method using block method. Comparison between the numerical and exact results has been given for some numerical examples for solving different type

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Mar 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Robust Two-Step Estimation and Approximation Local Polynomial Kernel For Time-Varying Coefficient Model With Balance Longitudinal Data
...Show More Authors

      In this research, the nonparametric technique has been presented to estimate the time-varying coefficients functions for the longitudinal balanced data that characterized by observations obtained through (n) from the independent subjects, each one of them is measured repeatedly by group of  specific time points (m). Although the measurements are independent among the different subjects; they are mostly connected within each subject and the applied techniques is the Local Linear kernel LLPK technique. To avoid the problems of dimensionality, and thick computation, the two-steps method has been used to estimate the coefficients functions by using the two former technique. Since, the two-

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 27 2018
Journal Name
Iraqi Journal Of Science
Accurate Three Dimensional Coordinates Measurements Using Differential GPS Real Time Kinematic Mode
...Show More Authors

The accurate 3-D coordinate's measurements of the global positioning systems are essential in many fields and applications. The GPS has numerous applications such as: Frequency Counters, Geographic Information Systems, Intelligent Vehicle Highway Systems, Car Navigation Systems, Emergency Systems, Aviations, Astronomical Pointing Control, and Atmospheric Sounding using GPS signals, tracking of wild animals, GPS Aid for the Blind, Recorded Position Information, Airborne Gravimetry and other uses. In this paper, the RTK DGPS mode has been used to create precise 3-D coordinates values for four rover stations in Baghdad university camp. The HiPer-II Receiver of global positioning system was used to navigate the coordinate value. The results wil

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Case Studies In Thermal Engineering
Robust composite temperature control of electrical tube furnaces by using disturbance observer
...Show More Authors

As one type of resistance furnace, the electrical tube furnace (ETF) typically experiences input noise, measurement noise, system uncertainties, unmodeled dynamics and external disturbances, which significantly degrade its temperature control performance. To provide precise, and robust temperature tracking performance for the ETF, a robust composite control (RCC) method is proposed in this paper. The overall RCC method consists of four elements: First, the mathematical model of the ETF system is deduced, then a state feedback control (SFC) is constructed. Third, a novel disturbance observer (DO) is designed to estimate the lumped disturbance with one observer parameter. Moreover, the stability of the closed loop system including controller

... Show More
View Publication
Scopus (8)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Existence And Controllability Results For Fractional Control Systems In Reflexive Banach Spaces Using Fixed Point Theorem
...Show More Authors

       In this paper, a fixed point theorem of nonexpansive mapping is established to study the existence and sufficient conditions for the controllability of nonlinear fractional control systems in reflexive Banach spaces. The result so obtained have been modified and developed in arbitrary space having Opial’s condition by using fixed point theorem deals with nonexpansive mapping defined on a set has normal structure. An application is provided to show the effectiveness of the obtained result.

View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Wed Dec 25 2019
Journal Name
Journal Of Engineering
Anti-Disturbance Compensator Design for Unmanned Aerial Vehicle
...Show More Authors

In this paper, an Anti-Disturbance Compensator is suggested for the stabilization of a 6-DoF quadrotor Unmanned Aerial vehicle (UAV) system, namely, the Improved Active Disturbance Rejection Control (IADRC). The proposed Control Scheme rejects the disturbances subjected to this system and eliminates the effect of the uncertainties that the quadrotor system exhibits. The complete nonlinear mathematical model of the 6-DoF quadrotor UAV system has been used to design the four ADRCs units for the attitude and altitude stabilization. Stability analysis has been demonstrated for the Linear Extended State Observer (LESO) of each IADRC unit and the overall closed-loop system using Hurwitz stability criterion. A minimization to a

... Show More
View Publication Preview PDF
Crossref (11)
Crossref
Publication Date
Wed Mar 13 2024
Journal Name
Journal Of Robotics
Hierarchical Stabilization and Tracking Control of a Flexible-Joint Bipedal Robot Based on Anti-Windup and Adaptive Approximation Control
...Show More Authors

Bipedal robotic mechanisms are unstable due to the unilateral contact passive joint between the sole and the ground. Hierarchical control layers are crucial for creating walking patterns, stabilizing locomotion, and ensuring correct angular trajectories for bipedal joints due to the system’s various degrees of freedom. This work provides a hierarchical control scheme for a bipedal robot that focuses on balance (stabilization) and low-level tracking control while considering flexible joints. The stabilization control method uses the Newton–Euler formulation to establish a mathematical relationship between the zero-moment point (ZMP) and the center of mass (COM), resulting in highly nonlinear and coupled dynamic equations. Adaptiv

... Show More
View Publication
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Tue Dec 07 2021
Journal Name
Tencon 2021 - 2021 Ieee Region 10 Conference (tencon)
Robust State Feedback Control of Electric Heating Furnace Using a New Disturbance Observer
...Show More Authors

As one type of heating furnaces, the electric heating furnace (EHF) typically suffers from time delay, non-linearity, time-varying parameters, system uncertainties, and harsh en-vironment of the furnace, which significantly deteriorate the temperature control process of the EHF system. In order to achieve accurate and robust temperature tracking performance, an integration of robust state feedback control (RSFC) and a novel sliding mode-based disturbance observer (SMDO) is proposed in this paper, where modeling errors and external disturbances are lumped as a lumped disturbance. To describe the characteristics of the EHF, by using convection laws, an integrated dynamic model is established and identified as an uncertain nonlinear second ord

... Show More
View Publication
Scopus (4)
Crossref (4)
Scopus Clarivate Crossref