Optimizing system performance in dynamic and heterogeneous environments and the efficient management of computational tasks are crucial. This paper therefore looks at task scheduling and resource allocation algorithms in some depth. The work evaluates five algorithms: Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Firefly Algorithm (FA) and Simulated Annealing (SA) across various workloads achieved by varying the task-to-node ratio. The paper identifies Finish Time and Deadline as two key performance metrics for gauging the efficacy of an algorithm, and a comprehensive investigation of the behaviors of these algorithms across different workloads was carried out. Results from the experiment
... Show MoreOne of the recent significant but challenging research studies in computational biology and bioinformatics is to unveil protein complexes from protein-protein interaction networks (PPINs). However, the development of a reliable algorithm to detect more complexes with high quality is still ongoing in many studies. The main contribution of this paper is to improve the effectiveness of the well-known modularity density ( ) model when used as a single objective optimization function in the framework of the canonical evolutionary algorithm (EA). To this end, the design of the EA is modified with a gene ontology-based mutation operator, where the aim is to make a positive collaboration between the modularity density model and the proposed
... Show MoreReal life scheduling problems require the decision maker to consider a number of criteria before arriving at any decision. In this paper, we consider the multi-criteria scheduling problem of n jobs on single machine to minimize a function of five criteria denoted by total completion times (∑), total tardiness (∑), total earliness (∑), maximum tardiness () and maximum earliness (). The single machine total tardiness problem and total earliness problem are already NP-hard, so the considered problem is strongly NP-hard.
We apply two local search algorithms (LSAs) descent method (DM) and simulated annealing method (SM) for the 1// (∑∑∑
... Show MoreSocial media is known as detectors platform that are used to measure the activities of the users in the real world. However, the huge and unfiltered feed of messages posted on social media trigger social warnings, particularly when these messages contain hate speech towards specific individual or community. The negative effect of these messages on individuals or the society at large is of great concern to governments and non-governmental organizations. Word clouds provide a simple and efficient means of visually transferring the most common words from text documents. This research aims to develop a word cloud model based on hateful words on online social media environment such as Google News. Several steps are involved including data acq
... Show MoreWireless Body Area Network (WBAN) is a tool that improves real-time patient health observation in hospitals, asylums, especially at home. WBAN has grown popularity in recent years due to its critical role and vast range of medical applications. Due to the sensitive nature of the patient information being transmitted through the WBAN network, security is of paramount importance. To guarantee the safe movement of data between sensor nodes and various WBAN networks, a high level of security is required in a WBAN network. This research introduces a novel technique named Integrated Grasshopper Optimization Algorithm with Artificial Neural Network (IGO-ANN) for distinguishing between trusted nodes in WBAN networks by means of a classifica
... Show More