The rapid and enormous growth of the Internet of Things, as well as its widespread adoption, has resulted in the production of massive quantities of data that must be processed and sent to the cloud, but the delay in processing the data and the time it takes to send it to the cloud has resulted in the emergence of fog, a new generation of cloud in which the fog serves as an extension of cloud services at the edge of the network, reducing latency and traffic. The distribution of computational resources to minimize makespan and running costs is one of the disadvantages of fog computing. This paper provides a new approach for improving the task scheduling problem in a Cloud-Fog environment in terms of execution time(makespan) and operating costs for Bag-of-Tasks applications. A task scheduling evolutionary algorithm has been proposed. A single custom representation of the problem and a uniform intersection are built for the proposed algorithm. Furthermore, the individual initialization and perturbation operators (crossover and mutation) were created to resolve the inapplicability of any solution found or reached by the proposed evolutionary algorithm. The proposed ETS (Evolutionary Task Scheduling algorithm) algorithm was evaluated on 11 datasets of varying size in a number of tasks. The ETS outperformed the Bee Life (BLA), Modified Particle Swarm (MPSO), and RR algorithms in terms of Makespan and operating costs, according to the results of the experiments.
Establishing complete and reliable coverage for a long time-span is a crucial issue in densely surveillance wireless sensor networks (WSNs). Many scheduling algorithms have been proposed to model the problem as a maximum disjoint set covers (DSC) problem. The goal of DSC based algorithms is to schedule sensors into several disjoint subsets. One subset is assigned to be active, whereas, all remaining subsets are set to sleep. An extension to the maximum disjoint set covers problem has also been addressed in literature to allow for more advance sensors to adjust their sensing range. The problem, then, is extended to finding maximum number of overlapped set covers. Unlike all related works which concern with the disc sensing model, the cont
... Show MoreInternet of Things (IoT) contributes to improve the quality of life as it supports many applications, especially healthcare systems. Data generated from IoT devices is sent to the Cloud Computing (CC) for processing and storage, despite the latency caused by the distance. Because of the revolution in IoT devices, data sent to CC has been increasing. As a result, another problem added to the latency was increasing congestion on the cloud network. Fog Computing (FC) was used to solve these problems because of its proximity to IoT devices, while filtering data is sent to the CC. FC is a middle layer located between IoT devices and the CC layer. Due to the massive data generated by IoT devices on FC, Dynamic Weighted Round Robin (DWRR)
... Show MoreGiven the high importance of attendance for university students, upon which the possibility of keeping or losing their places in the course is based, it is essential to replace the inefficient manual method of attendance recording with a more efficient one. To handle this problem, technology must be introduced into this process. This paper aims to propose an automatic attendance system based on passive Radio Frequency Identification (RFID), fog, and cloud computing technologies (AASCF). The system has three sides. The first one, which is the Client-side; works on collecting the attendance data then sending a copy from it. The second side, which is the Server-side, works on calculating an absence ratio of all the students during the
... Show MoreCloud computing describes computer services provided through the internet and includes a wide range of virtualization resources. Because cloud computing is made up of a sizable number of heterogeneous autonomous systems with an adaptable computational architecture, it has been widely adopted by many businesses. The scheduling and management of resource utilization, however, have become more difficult as a result of cloud computing. Task scheduling is crucial, and this procedure must schedule tasks on the virtual machine while using the least amount of time possible. Utilizing an effective scheduling strategy enhances and expedites cloud computing services. Optimization techniques are used to resolve cloud scheduling problems.
... Show MoreIn this paper, two of the local search algorithms are used (genetic algorithm and particle swarm optimization), in scheduling number of products (n jobs) on a single machine to minimize a multi-objective function which is denoted as (total completion time, total tardiness, total earliness and the total late work). A branch and bound (BAB) method is used for comparing the results for (n) jobs starting from (5-18). The results show that the two algorithms have found the optimal and near optimal solutions in an appropriate times.
The most popular medium that being used by people on the internet nowadays is video streaming. Nevertheless, streaming a video consumes much of the internet traffics. The massive quantity of internet usage goes for video streaming that disburses nearly 70% of the internet. Some constraints of interactive media might be detached; such as augmented bandwidth usage and lateness. The need for real-time transmission of video streaming while live leads to employing of Fog computing technologies which is an intermediary layer between the cloud and end user. The latter technology has been introduced to alleviate those problems by providing high real-time response and computational resources near to the
... Show MoreEvolutionary algorithms (EAs), as global search methods, are proved to be more robust than their counterpart local heuristics for detecting protein complexes in protein-protein interaction (PPI) networks. Typically, the source of robustness of these EAs comes from their components and parameters. These components are solution representation, selection, crossover, and mutation. Unfortunately, almost all EA based complex detection methods suggested in the literature were designed with only canonical or traditional components. Further, topological structure of the protein network is the main information that is used in the design of almost all such components. The main contribution of this paper is to formulate a more robust EA wit
... Show MoreEvolutionary algorithms (EAs), as global search methods, are proved to be more robust than their counterpart local heuristics for detecting protein complexes in protein-protein interaction (PPI) networks. Typically, the source of robustness of these EAs comes from their components and parameters. These components are solution representation, selection, crossover, and mutation. Unfortunately, almost all EA based complex detection methods suggested in the literature were designed with only canonical or traditional components. Further, topological structure of the protein network is the main information that is used in the design of almost all such components. The main contribution of this paper is to formulate a more robust E
... Show More