The rapid and enormous growth of the Internet of Things, as well as its widespread adoption, has resulted in the production of massive quantities of data that must be processed and sent to the cloud, but the delay in processing the data and the time it takes to send it to the cloud has resulted in the emergence of fog, a new generation of cloud in which the fog serves as an extension of cloud services at the edge of the network, reducing latency and traffic. The distribution of computational resources to minimize makespan and running costs is one of the disadvantages of fog computing. This paper provides a new approach for improving the task scheduling problem in a Cloud-Fog environment in terms of execution time(makespan) and operating costs for Bag-of-Tasks applications. A task scheduling evolutionary algorithm has been proposed. A single custom representation of the problem and a uniform intersection are built for the proposed algorithm. Furthermore, the individual initialization and perturbation operators (crossover and mutation) were created to resolve the inapplicability of any solution found or reached by the proposed evolutionary algorithm. The proposed ETS (Evolutionary Task Scheduling algorithm) algorithm was evaluated on 11 datasets of varying size in a number of tasks. The ETS outperformed the Bee Life (BLA), Modified Particle Swarm (MPSO), and RR algorithms in terms of Makespan and operating costs, according to the results of the experiments.
Artificial fish swarm algorithm (AFSA) is one of the critical swarm intelligent algorithms. In this
paper, the authors decide to enhance AFSA via diversity operators (AFSA-DO). The diversity operators will
be producing more diverse solutions for AFSA to obtain reasonable resolutions. AFSA-DO has been used to
solve flexible job shop scheduling problems (FJSSP). However, the FJSSP is a significant problem in the
domain of optimization and operation research. Several research papers dealt with methods of solving this
issue, including forms of intelligence of the swarms. In this paper, a set of FJSSP target samples are tested
employing the improved algorithm to confirm its effectiveness and evaluate its ex
In project management process, the objective is to define and develop a model for planning, scheduling, controlling, and monitoring different activities of a particular project. Time scheduling plays an important role in successful implementation of various activities and general outcome of project. In practice, various factors cause projects to suffer from time delay in accomplishing the activities. One important reason is imprecise knowledge about time duration of activities. This study addresses the problem of project scheduling in uncertain resource environments, which are defined by uncertain activity durations. The study presents a solution of the levelling and allocation problems for projects that have some uncertain ac
... Show MoreOne of the recent significant but challenging research studies in computational biology and bioinformatics is to unveil protein complexes from protein-protein interaction networks (PPINs). However, the development of a reliable algorithm to detect more complexes with high quality is still ongoing in many studies. The main contribution of this paper is to improve the effectiveness of the well-known modularity density ( ) model when used as a single objective optimization function in the framework of the canonical evolutionary algorithm (EA). To this end, the design of the EA is modified with a gene ontology-based mutation operator, where the aim is to make a positive collaboration between the modularity density model and the proposed
... Show MoreMeerkat Clan Algorithm (MCA) is a nature-based metaheuristic algorithm which imitates the intelligent behavior of the meerkat animal. This paper presents an improvement on the MCA based on a chaotic map and crossover strategy (MCA-CC). These two strategies increase the diversification and intensification of the proposed algorithm and boost the searching ability to find more quality solutions. The 0-1 knapsack problem was solved by the basic MCA and the improved version of this algorithm (MCA-CC). The performance of these algorithms was tested on low and high dimensional problems. The experimental results demonstrate that the proposed algorithm had overcome the basic algorithm in terms of solution quality, speed a
... Show MoreRivest Cipher 4 (RC4) is an efficient stream cipher that is commonly used in internet protocols. However, there are several flaws in the key scheduling algorithm (KSA) of RC4. The contribution of this paper is to overcome some of these weaknesses by proposing a new version of KSA coined as modified KSA . In the initial state of the array is suggested to contain random values instead of the identity permutation. Moreover, the permutation of the array is modified to depend on the key value itself. The proposed performance is assessed in terms of cipher secrecy, randomness test and time under a set of experiments with variable key size and different plaintext size. The results show that the RC4 with improves the randomness and secrecy with
... Show MoreOptimizing system performance in dynamic and heterogeneous environments and the efficient management of computational tasks are crucial. This paper therefore looks at task scheduling and resource allocation algorithms in some depth. The work evaluates five algorithms: Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Firefly Algorithm (FA) and Simulated Annealing (SA) across various workloads achieved by varying the task-to-node ratio. The paper identifies Finish Time and Deadline as two key performance metrics for gauging the efficacy of an algorithm, and a comprehensive investigation of the behaviors of these algorithms across different workloads was carried out. Results from the experiment
... Show MoreReal life scheduling problems require the decision maker to consider a number of criteria before arriving at any decision. In this paper, we consider the multi-criteria scheduling problem of n jobs on single machine to minimize a function of five criteria denoted by total completion times (∑), total tardiness (∑), total earliness (∑), maximum tardiness () and maximum earliness (). The single machine total tardiness problem and total earliness problem are already NP-hard, so the considered problem is strongly NP-hard.
We apply two local search algorithms (LSAs) descent method (DM) and simulated annealing method (SM) for the 1// (∑∑∑
... Show More