The matter of handwritten text recognition is as yet a major challenge to mainstream researchers. A few ways deal with this challenge have been endeavored in the most recent years, for the most part concentrating on the English pre-printed or handwritten characters space. Consequently, the need to effort a research concerning to Arabic texts handwritten recognition. The Arabic handwriting presents unique technical difficulties because it is cursive, right to left in writing and the letters convert its shapes and structures when it is putted at initial, middle, isolation or at the end of words. In this study, the Arabic text recognition is developed and designed to recognize image of Arabic text/characters. The proposed model gets a single line of Arabic text, which convert and segments into words and then segments into letters. A multilayer feed forward neural network is trained to recognize these segments as characters. The final results indicate and clarify that the proposed system perform an effective accuracy of recognition rated up to 83% for Arabic text.
In this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.
In this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
The drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the
......
The Iraqi government seeks to overcome the financial crisis by investing and privatizing some projects to achieve sustainable growth. Most of the investment projects in Iraq suffer from many constraints that greatly impact the success of these projects. A survey of the opinions of a group of experts was conducted to identify the most important constraints facing the investment process in Iraq. Then the experts' answers were arranged in a closed questionnaire and distributed to the research sample for which the statistical analysis was conducted. Through it, the most important (17) factors that had the greatest impact on the failure of investment projects in Iraq were reached. One of the main constraints was
... Show MoreBackground: Aesthetic archwires are used to overcome the aesthetic problems of stainless steel wires but the color of the coating layer can be changed with time when exposed to oral environments. The aim of this study was to evaluate the degree of color change of different aesthetic archwires from different companies under different coloring solutions. Materials and Methods: One hundred fifty samples of coated archwires from three companies (Highland, G&H and Dany) were immersed in 5 solutions (artificial saliva, turmeric, tea, coffee and Miranda) to evaluate the degree of color changes after 7, 14 and 21 days using visible spectrophotometer. Data were collected and analyzed using one way ANOVA and post hoc Tukey’s tests. Resu
... Show MoreElectromyogram (EMG)-based Pattern Recognition (PR) systems for upper-limb prosthesis control provide promising ways to enable an intuitive control of the prostheses with multiple degrees of freedom and fast reaction times. However, the lack of robustness of the PR systems may limit their usability. In this paper, a novel adaptive time windowing framework is proposed to enhance the performance of the PR systems by focusing on their windowing and classification steps. The proposed framework estimates the output probabilities of each class and outputs a movement only if a decision with a probability above a certain threshold is achieved. Otherwise (i.e., all probability values are below the threshold), the window size of the EMG signa
... Show MoreOver the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.
The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parame
With the spread of globalization, the need for translators and scholars has grown, as translation is the only process that helps bridge linguistic gaps. Following the emergence of artificial intelligence (AI), a strong competitor has arisen to the translators, sweeping through all scientific and professional fields, including translation sector, with a set of tools that aid in the translation process. The current study aims to investigate the capability of AI tools in translating texts rich in cultural variety from one language to another, specifically focusing on English-Arabic translations, through qualitative analysis to uncover cultural elements in the target language and determine the ability of AI tools to preserve, lose, or alter the
... Show More