Preferred Language
Articles
/
KxaaBYcBVTCNdQwCBy8Z
Developing an Arabic handwritten recognition system by means of artificial neural network
...Show More Authors

The matter of handwritten text recognition is as yet a major challenge to mainstream researchers. A few ways deal with this challenge have been endeavored in the most recent years, for the most part concentrating on the English pre-printed or handwritten characters space. Consequently, the need to effort a research concerning to Arabic texts handwritten recognition. The Arabic handwriting presents unique technical difficulties because it is cursive, right to left in writing and the letters convert its shapes and structures when it is putted at initial, middle, isolation or at the end of words. In this study, the Arabic text recognition is developed and designed to recognize image of Arabic text/characters. The proposed model gets a single line of Arabic text, which convert and segments into words and then segments into letters. A multilayer feed forward neural network is trained to recognize these segments as characters. The final results indicate and clarify that the proposed system perform an effective accuracy of recognition rated up to 83% for Arabic text.

Publication Date
Fri Mar 30 2001
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
The Control of Powder Detergent Bulk Density by Means of Counter current Spray Dryer
...Show More Authors

View Publication Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
Telkomnika (telecommunication Computing Electronics And Control)
An efficient method for stamps recognition using Haar wavelet sub-bands
...Show More Authors

View Publication
Scopus (3)
Scopus Crossref
Publication Date
Sat Feb 01 2025
Journal Name
Algorithms
Three-Dimensional Object Recognition Using Orthogonal Polynomials: An Embedded Kernel Approach
...Show More Authors

Computer vision seeks to mimic the human visual system and plays an essential role in artificial intelligence. It is based on different signal reprocessing techniques; therefore, developing efficient techniques becomes essential to achieving fast and reliable processing. Various signal preprocessing operations have been used for computer vision, including smoothing techniques, signal analyzing, resizing, sharpening, and enhancement, to reduce reluctant falsifications, segmentation, and image feature improvement. For example, to reduce the noise in a disturbed signal, smoothing kernels can be effectively used. This is achievedby convolving the distributed signal with smoothing kernels. In addition, orthogonal moments (OMs) are a cruc

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Mon Feb 13 2023
Journal Name
Journal Of Educational And Psychological Researches
Developing an Achievement Test in Light of the Specifications Table
...Show More Authors

Abstract

The research addresses the specification table and the extent of its use in developing achievement tests, as well as detects the obstacles to its use through a sample of (120) respondents from the faculty members in some Baghdad schools and colleges. After unpacking and processing the data statistically, the research reached several results: the study sample do not use the test map in the development of their tests, as their percentage reached (82%) and there are no statistically significant differences in the use of the specification table by the sample members according to their place of work or the number of years of experience. The results also revealed the most important reasons that prevent the use

... Show More
View Publication Preview PDF
Publication Date
Sun Apr 08 2018
Journal Name
Al-khwarizmi Engineering Journal
Design of Hybrid Neural Fuzzy Controller for Human Robotic Leg System
...Show More Authors

 In this paper, the human robotic leg which can be represented mathematically by single input-single output (SISO) nonlinear differential model with one degree of freedom, is analyzed and then a simple hybrid neural fuzzy controller is designed to improve the performance of this human robotic leg model. This controller consists from SISO fuzzy proportional derivative (FPD) controller with nine rules summing with single node neural integral derivative (NID) controller with nonlinear function. The Matlab simulation results for nonlinear robotic leg model with the suggested controller showed that the efficiency of this controller when compared with the results of the leg model that is controlled by PI+2D, PD+NID, and F

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Engineering
Artificial Neural Networks Modeling of Total Dissolved Solid in the Selected Locations on Tigris River, Iraq
...Show More Authors

The study aims to predict Total Dissolved Solids (TDS) as a water quality indicator parameter at spatial and temporal distribution of the Tigris River, Iraq by using Artificial Neural Network (ANN) model. This study was conducted on this river between Mosul and Amarah in Iraq on five positions stretching along the river for the period from 2001to 2011. In the ANNs model calibration, a computer program of multiple linear regressions is used to obtain a set of coefficient for a linear model. The input parameters of the ANNs model were the discharge of the Tigris River, the year, the month and the distance of the sampling stations from upstream of the river. The sensitivity analysis indicated that the distance and discharge

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 19 2024
Journal Name
An International Journal Of Optimization And Control: Theories & Applications (ijocta)
Design optimal neural network based on new LM training algorithm for solving 3D - PDEs
...Show More Authors

In this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.

View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2014
Journal Name
International Journal Of Computer Applications
Enhancing the Delta Training Rule for a Single Layer Feedforward Heteroassociative Memory Neural Network
...Show More Authors

In this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.

Publication Date
Wed Jun 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Compared with Genetic Algorithm Fast – MCD – Nested Extension and Neural Network Multilayer Back propagation
...Show More Authors

The study using Nonparametric methods for roubust to estimate a location and scatter it is depending  minimum covariance determinant of multivariate regression model , due to the presence of outliear values and increase the sample size and presence of more than after the model regression multivariate therefore be difficult to find a median location .       

It has been the use of genetic algorithm Fast – MCD – Nested Extension and compared with neural Network Back Propagation of multilayer in terms of accuracy of the results and speed in finding median location ,while the best sample to be determined by relying on less distance (Mahalanobis distance)has the stu

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Journal Of Engineering
Automatic Spike Neural Technique for Slicing Bandwidth Estimated Virtual Buffer-Size in Network Environment
...Show More Authors

The Next-generation networks, such as 5G and 6G, need capacity and requirements for low latency, and high dependability. According to experts, one of the most important features of (5 and 6) G networks is network slicing. To enhance the Quality of Service (QoS), network operators may now operate many instances on the same infrastructure due to configuring able slicing QoS. Each virtualized network resource, such as connection bandwidth, buffer size, and computing functions, may have a varied number of virtualized network resources. Because network resources are limited, virtual resources of the slices must be carefully coordinated to meet the different QoS requirements of users and services. These networks may be modifie

... Show More
View Publication Preview PDF
Crossref