Near surface mounted (NSM) carbon fibers reinforced polymer (CFRP) reinforcement is one of the techniques for reinforcing masonry structures and is considered to provide significant advantages. This paper is composed of two parts. The first part presents the experimental study of brick masonry walls reinforced with NSM CFRP strips under combined shear-compression loads. Masonry walls have been tested under vertical compression, with different bed joint orientations 90° and 45° relative to the loading direction. Different reinforcement orientations were used including vertical, horizontal, and a combination of both sides of the wall. The second part of this paper comprises a numerical analysis of unreinforced brick masonry (URM) walls using the detailed micro-modelling approach (DMM) by means of ABAQUS software. In this analysis, the non-linearity behavior of brick and mortar was simulated using the concrete damaged plasticity (CDP) constitutive laws. The results proved that the application of the NSM-CFRP strips on the masonry wall influences significantly strength, ductility, and post-peak behavior, as well as changing the failure modes. The adopted DMM model provides a good interface to predict the post peak behavior and failure mode of unreinforced brick masonry walls.
This work involves theoretical and experimental studies for seven compounds to calculate the electrons spectrum and NLO properties. The theoretical study is done by employing the Time Depending Density Functional Theory TD-DFT and B3LYP/high basis set 6-311++G (2d,2p), using Gaussian program 09. Experimental study by UV/VIS spectrophotometer device to prove the theoretical study. Theoretical and experimental results were applicable in spectrum and energy gap values, in addition to convergence theoretically the energy gap results from ΔEHOMO-LUMO and UV/VIS. spectrum. Consider the theoretical method very appropriate to compounds that absorb in vacuum UV.
In this work, the effect of vortex shedding on the solar collector performance of the parabolic trough solar collector (PTSC) was estimated experimentally. The effect of structure oscillations due to wind vortex shedding on solar collector performance degradation was estimated. The performance of PTSC is evaluated by using the useful heat gain and the thermal instantaneous efficiency. Experimental work to simulate the vortex shedding excitation was done. The useful heat gain and the thermal efficiency of the parabolic trough collector were calculated from experimental measurements with and without vortex loading. The prototype of the collector was fabricated for this purpose. The effect of vortex shedding at different operation condition
... Show MoreThe aim of the present work is to develop a new class of natural fillers based polymer composites with sawdust (S.D) which used two particle sizes (1.2 μm & 2.3 μm) and different weight percentage from sawdust (10%, 15%, and 20%). The mechanical properties studied include hardness (shore D) for all samples at normal conditions (N.C). The unsaturated polyester (UPE) and its composites samples were immersed in water for 30 days to find the effect of particle size of sawdust (S.D) on the weight gain (Mt %) by water for all the samples, also to find the effect of water on their hardness. The results show that the composite materials of sawdust (S.D) fillers which has particle size (1.2 μm) better than (2.3 μm) particle size bef
... Show MoreHydroisomerization of Iraqi light naphtha was studied on prepared Ni-Pt/H-mordenite catalyst at a temperature range of 220-300°C, hydrogen to hydrocarbon molar ratio of 3.7, liquid hourly space velocity (LHSV) 1 hr-1 and at atmospheric pressure.
The result shows that the hydrisomerization of light naphtha increases with the increase in reaction temperature at constant LHSV. However, above 270 0C the isomers formation decreases and the reaction is shifted towards the hydrocracking reaction, a higher octane number of naphtha was formed at 270 °C.
Copper electrodeposition by electrorefining process in acidic sulfate media contains 40 g/l of cupric ions and 160 g/l of sulfuric acid was achieved to study the influence of the operating parameters on cathode purity, surface morphology, deposition rate, current efficiency and power consumption. These operating parameters and there ranges are: current density 200, 300 and 400 A/m2, electrolyte temperature 35, 50 and 65 oC, electrodes spacing 15, 30 and 45 mm and electrolyte residence time 6, 4 and 2 h were utilized. XRF, SEM and EDX analyses were attained to clarify the properties of the produced cathode.
Numerical study is adapted to combine between piezoelectric fan as a turbulent air flow generator and perforated finned heat sinks. A single piezoelectric fan with different tip amplitudes placed eccentrically at the duct entrance. The problem of solid and perforated finned heat sinks is solved and analyzed numerically by using Ansys 17.2 fluent, and solving three dimensional energy and Navier–Stokes equations that set with RNG based k−ε scalable wall function turbulent model. Finite volume algorithm is used to solve both phases of solid and fluid. Calculations are done for three values of piezoelectric fan amplitudes 25 mm, 30 mm, and 40 mm, respectively. Results of this numerical study are compared with previous b
... Show MoreWe aimed to examine the effect of amoxicillin and azithromycin suspensions on the microhardness of sliver-reinforced glass ionomer and nano-resin modified glass ionomer (GI). Method: Thirty discs (2mm height x 4mm diameter) of each type of GI were prepared, which were randomly assigned to amoxicillin, azithromycin, and artificial saliva groups. Microhardness was evaluated by Vickers hardness test before and after three immersion cycles. Results: The overall model (P < 0.001), before/after intervention (P < 0.001), intervention group (type of antibiotic) (P=0.013), and type of glass ionomer (P < 0.001) showed significant differences among study groups (P < 0.001). Post hoc test showed only non-significant before/after difference for Azithrom
... Show MoreThis manuscript investigated the effect of anchorage CFRP wrapping sheets, bolts, and laminate interlock on increasing the efficiency of flexural strengthening for the post-tension girder using CFRP composites techniques longitudinal laminates at the soffit for partially damaged loss of about 14.3% from its area of prestressed concrete beams, and the impact on restoring the original flexural capacity of PC girder. Mitigating delamination of the soffit of horizontal laminates (CFRP). The texture of the laminate and anchorages influenced the stress of the laminate carbon fiber, the mode of crack propagation and failure, and consequently, the beam's attitude has been investigated in this manuscript. The experimental findi
... Show MoreIn the present study, nanoporous material type MCM-41 was prepared by the sol-gel technique and was used as a carrier for prednisolone (PRD) drug delivery. The structural properties of mesoporous were fully characterized by X-ray diffraction (XRD), N2 adsorption /desorption and Fourier-transform infrared (FTIR). The mass transfer in term of adsorption process (loading) and desorption process (releasing) properties were investigated. The maximum drug loading efficiency was equal to 38% and 47.5% at different concentrations. The PRD released was prudently studied in water media of pH 6.8 simulated body fluid (SBF) in according to "United State Pharmacopeia (USP38)". The results proved that the release of prednisolone from MCM-41
... Show More