This work bases on encouraging a generous and conceivable estimation for modified an algorithm for vehicle travel times on a highway from the eliminated traffic information using set aside camera image groupings. The strategy for the assessment of vehicle travel times relies upon the distinctive verification of traffic state. The particular vehicle velocities are gotten from acknowledged vehicle positions in two persistent images by working out the distance covered all through elapsed past time doing mollification between the removed traffic flow data and cultivating a plan to unequivocally predict vehicle travel times. Erbil road data base is used to recognize road locales around road segments which are projected into the commended camera images and later distinguished vehicles are assigned to the looking at route segment so instantaneous and current velocities are calculated. All data were effectively processed and visualized using both MATLAB and Python programming language and its libraries.
The research aims at clarifying the role of green human resource management practices in achieving sustainable development. The research problem is that the health sector is less concerned with environmental aspects, specifically green human resource management practices, Which are reflected on sustainable development with their economic, environmental and social dimensions as well as reducing costs, waste minimization and recycling, And the research started from two main hypotheses to explore the correlation and influence between the variables of the research by analyzing the answers of the research sample, which included (136) employees of the Al-Imamein Al-kadhemein medical city, Data and information were collected using quest
... Show MorePermeability estimation is a vital step in reservoir engineering due to its effect on reservoir's characterization, planning for perforations, and economic efficiency of the reservoirs. The core and well-logging data are the main sources of permeability measuring and calculating respectively. There are multiple methods to predict permeability such as classic, empirical, and geostatistical methods. In this research, two statistical approaches have been applied and compared for permeability prediction: Multiple Linear Regression and Random Forest, given the (M) reservoir interval in the (BH) Oil Field in the northern part of Iraq. The dataset was separated into two subsets: Training and Testing in order to cross-validate the accuracy
... Show MoreThe permeability is the most important parameter that indicates how efficient the reservoir fluids flow through the rock pores to the wellbore. Well-log evaluation and core measurements techniques are typically used to estimate it. In this paper, the permeability has been predicted by using classical and Flow zone indicator methods. A comparison between the two methods shows the superiority of the FZI method correlations, these correlations can be used to estimate permeability in un-cored wells with a good approximation.
In the last few years, the use of artificial neural network analysis has increased, particularly, in geotechnical engineering problems and has demonstrated some success. In this research, artificial neural network analysis endeavors to predict the relationship between physical and mechanical properties of Baghdad soil by making different trials between standard penetration test, liquid limit, plastic limit, plasticity index, cohesion, angle of internal friction, and bearing capacity. The analysis revealed that the changes in natural water content and plastic limit have a great effect on the cohesion of soil and the angle of internal friction, respectively. . On the other hand, the liquid limit has a great impact on the bearing capacity and
... Show MoreIn the last few years, the use of artificial neural network analysis has increased, particularly, in geotechnical engineering problems and has demonstrated some success. In this research, artificial neural network analysis endeavors to predict the relationship between physical and mechanical properties of Baghdad soil by making different trials between standard penetration test, liquid limit, plastic limit, plasticity index, cohesion, angle of internal friction, and bearing capacity. The analysis revealed that the changes in natural water content and plastic limit have a great effect on the cohesion of soil and the angle of internal friction, respectively. . On the other hand, the liquid limit has a great impact on the bearing capacity and
... Show MoreIn the last few years, the use of artificial neural network analysis has increased, particularly, in geotechnical engineering problems and has demonstrated some success. In this research, artificial neural network analysis endeavors to predict the relationship between physical and mechanical properties of Baghdad soil by making different trials between standard penetration test, liquid limit, plastic limit, plasticity index, cohesion, angle of internal friction, and bearing capacity. The analysis revealed that the changes in natural water content and plastic limit have a great effect on the cohesion of soil and the angle of internal friction, respectively. . On the other hand, the liquid limit has a great impact on the bearing capacity and
... Show MoreIn Production and Operations Management the specialists have tried to develop a strategy to counter the risks arising from the activities of the organization and of waste of various types and therefore the risk management in the contemporary framework represents a phenomenon of new quality, and can not be this phenomenon to take practical dimensions, but the development of culture of the organization towards the risks and deal with all aspects and paint ways to address them within an integrated program, and requires new skills and systems provide accurate information capable of coordination between the various parties within the organization.
The research aims to develop a blu
... Show MoreProblem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show More<span lang="EN-US">Usability evaluation is a core usability activity that minimizes risks and improves product quality. The returns from usability evaluation are undeniable. Neglecting such evaluation at the development stage negatively affects software usability. In this paper, the authors develop a software management tool used to incorporate usability evaluation activities into the agile environment. Using this tool, agile development teams can manage a continuous evaluation process, tightly coupled with the development process, allowing them to develop high quality software products with adequate level of usability. The tool was evaluated through verification, followed by the validation on satisfaction. The evaluation resu
... Show MoreThe aim of the research is to identify the role of university education management in achieving sustainable environmental development.