This paper presents a comparison study on thermal performance conic cut twist tape inserts in laminar flow of nanofluids through a constant heat fluxed tube. Three tape configurations, namely, quadrant cut twisted tape (QCT), parabolic half cut twisted tape (PCT), and triangular cut twisted (VCT) of twist ratio= 2.93 and cut depth= 0.5 cm were used with 1% and 2% volume concentration of SiO2/water and TiO2/water nanofluids. Typical twist tape with twist ratio of= 2.93 was used for comparison. The results show that the heat transfer was enhanced by increasing of Reynolds number and nanoparticles concentration of nanofluid. The results have also revealed that the use of twist tape enhanced the heat transfer coefficient significantly and maximum heat transfer enhancement was achieved by the presence of triangular cut twist tape insert with 2% volume concentration of SiO2nanofluid. Over the range investigated, the maximum thermal performance factor of 5.13 is found with the simultaneous use of the SiO2nanofluid at 2% volume concentration VCT at Reynolds number of 220. Furthermore, new empirical correlations for Nusselt number, friction factor, and thermal performance factor are developed and reported.
Let be a commutative ring with identity , and be a unitary (left) R-module. A proper submodule of is said to be quasi- small prime submodule , if whenever with and , then either or . In this paper ,we give a comprehensive study of quasi- small prime submodules.
the regional and spatial dimension of development planning must be taken as a point of departure to the mutual of the spatial structure of the economy , development strategy and policies applied 'therein such as the location principles and regional development coordination of the territorial problems with the national development planning and timing of regional vis-a-vis national development plan_. Certain balance and integration is of sound necessity' between national _regional and local development objectives through which the national development strategy should have to represent the guidelines of the local development aspirations and goals. The economic development exerts an impact on the spatial evolution, being itself subje
... Show MoreIn this notion we consider a generalization of the notion of a projective modules , defined using y-closed submodules . We show that for a module M = M1M2 . If M2 is M1 – y-closed projective , then for every y-closed submodule N of M with M = M1 + N , there exists a submodule M`of N such that M = M1M`.
Let be an R-module, and let be a submodule of . A submodule is called -Small submodule () if for every submodule of such that implies that . In our work we give the definition of -coclosed submodule and -hollow-lifiting modules with many properties.
In this work we shall introduce the concept of weakly quasi-prime modules and give some properties of this type of modules.
The purpose of this paper is to introduce a new type of compact spaces, namely semi-p-compact spaces which are stronger than compact spaces; we give properties and characterizations of semi-p-compact spaces.
Let R be an associative ring with identity and let M be a unitary left R–module. As a generalization of small submodule , we introduce Jacobson–small submodule (briefly J–small submodule ) . We state the main properties of J–small submodules and supplying examples and remarks for this concept . Several properties of these submodules are given . Also we introduce Jacobson–hollow modules ( briefly J–hollow ) . We give a characterization of J–hollow modules and gives conditions under which the direct sum of J–hollow modules is J–hollow . We define J–supplemented modules and some types of modules that are related to J–supplemented modules and int
... Show MoreThe purpose of this paper is to prove the following result : Let R be a 2-torsion free prime *-ring , U a square closed *-Lie ideal, and let T: RR be an additive mapping. Suppose that 3T(xyx) = T(x) y*x* + x*T(y)x* + x*y*T(x) and x*T(xy+yx)x* = x*T(y)x*2 + x*2T(y)x* holds for all pairs x, y U , and T(u) U, for all uU, then T is a reverse *-centralizer.