The aim of this article is to study the dynamical behavior of an eco-epidemiological model. A prey-predator model comprising infectious disease in prey species and stage structure in predator species is suggested and studied. Presumed that the prey species growing logistically in the absence of predator and the ferocity process happened by Lotka-Volterra functional response. The existence, uniqueness, and boundedness of the solution of the model are investigated. The stability constraints of all equilibrium points are determined. The constraints of persistence of the model are established. The local bifurcation near every equilibrium point is analyzed. The global dynamics of the model are investigated numerically and confronted with the obtained outcomes.
The dynamical behavior of a two-dimensional continuous time dynamical system describing by a prey predator model is investigated. By means of constructing suitable Lyapunov functional, sufficient condition is derived for the global asymptotic stability of the positive equilibrium of the system. The Hopf bifurcation analysis is carried out. The numerical simulations are used to study the effect of periodic forcing in two different parameters. The results of simulations show that the model under the effects of periodic forcing in two different parameters, with or without phase difference, could exhibit chaotic dynamics for realistic and biologically feasible parametric values.
This article examines and proposes a dietary chain model with a prey shelter and alternative food sources. It is anticipated that mid-predators' availability is positively correlated with the number of refuges. The solution's existence and exclusivity are examined. It is established that the solution is bounded. It is explored whether all potential equilibrium points exist and are locally stable. The Lyapunov approach is used to investigate the equilibrium points' worldwide stability. Utilizing a Sotomayor theorem application, local bifurcation is studied. Numerical simulation is used to better comprehend the dynamics of the model and define the control set of parameters.
Due to the fact that living organisms do not exist individually, but rather exist in clusters interacting with each other, which helps to spread epidemics among them. Therefore, the study of the prey-predator system in the presence of an infectious disease is an important topic because the disease affects the system's dynamics and its existence. The presence of the hunting cooperation characteristic and the induced fear in the prey community impairs the growth rate of the prey and therefore affects the presence of the predator as well. Therefore, this research is interested in studying an eco-epidemiological system that includes the above factors. Therefore, an eco-epidemiological prey-predator model incorporating predation fear and
... Show MoreIt is recognized that organisms live and interact in groups, exposing them to various elements like disease, fear, hunting cooperation, and others. As a result, in this paper, we adopted the construction of a mathematical model that describes the interaction of the prey with the predator when there is an infectious disease, as well as the predator community's characteristic of cooperation in hunting, which generates great fear in the prey community. Furthermore, the presence of an incubation period for the disease provides a delay in disease transmission from diseased predators to healthy predators. This research aims to examine the proposed mathematical model's solution behavior to better understand these elements' impact on an eco-epidemi
... Show MoreIn this paper, an eco-epidemiological prey-predator system when the predator is subjected to the weak Allee effect, and harvesting was proposed and studied. The set of ordinary differential equations that simulate the system’s dynamic is constructed. The impact of fear and Allee’s effect on the system's dynamic behavior is one of our main objectives. The properties of the solution of the system were studied. All possible equilibrium points were determined, and their local, as well as global stabilities, were investigated. The possibility of the occurrence of local bifurcation was studied. Numerical simulation was used to further evaluate the global dynamics and understood the effects of varying parameters on the asymptotic behavior of t
... Show MoreIn this study, we set up and analyze a cancer growth model that integrates a chemotherapy drug with the impact of vitamins in boosting and strengthening the immune system. The aim of this study is to determine the minimal amount of treatment required to eliminate cancer, which will help to reduce harm to patients. It is assumed that vitamins come from organic foods and beverages. The chemotherapy drug is added to delay and eliminate tumor cell growth and division. To that end, we suggest the tumor-immune model, composed of the interaction of tumor and immune cells, which is composed of two ordinary differential equations. The model’s fundamental mathematical properties, such as positivity, boundedness, and equilibrium existence, are exami
... Show MoreKaolin ceramic compacts sintered at various temperatures are investigated to correlate their microstructure with their acoustic parameters. Pulse velocity , attenuation coefficient, and quality factor values are ducts from ultrasonic attenuation measurements, moreover, the dynamical mechanics parameters( Young and shear modules) exhibited an explicit relationship with the acoustic quality factor.inturn are related to the microstructure which is heavily affected by the sintering mechanism.
In this paper, a novel coronavirus (COVID-19) model is proposed and investigated. In fact, the pandemic spread through a close contact between infected people and other people but sometimes the infected people could show two cases; the first is symptomatic and the other is asymptomatic (carrier) as the source of the risk. The outbreak of Covid-19 virus is described by a mathematical model dividing the population into four classes. The first class represents the susceptible people who are unaware of the disease. The second class refers to the susceptible people who are aware of the epidemic by media coverage. The third class is the carrier individuals (asymptomatic) and the fourth class represents the infected ind
... Show MoreThe motion of fast deuterons in most dense plasma focus devices ( DPF ) , may be characterized that it has a complex nature in its paths and this phenomena by describing a through gyrating motion with arbitrary changes in magnitude and direction . In this research , we focused on the understanding the theoretical concepts which depend deeply on the experimental results to explain the deuteron motions in the pinch region , and then to use the fundamental physical formulas that are deeply related to the explanation of this motion to prepare a suitable model for calculating the vertical and radial components for deuteron velocity by improving the Rung – Kutta Method
In this research, dynamical study of an SIR epidemical model with nonlinear direct incidence rate (Beddington-De Angelis ) type, and regress of treatment investigated .An analytical study to the model shows that there are two equilibrium points appear, the discussed successfully with sufficient condition, the existence of local bifurcation and Hopf bifurcation was analyzed, finally numerical simulations are done to explain the analytic studies.