Carbon dioxide (CO2) capture and storage is a critical issue for mitigating climate change. Porous aromatic Schiff base complexes have emerged as a promising class of materials for CO2 capture due to their high surface area, porosity, and stability. In this study, we investigate the potential of Schiff base complexes as an effective media for CO2 storage. We review the synthesis and characterization of porous aromatic Schiff bases materials complexes and examine their CO2 sorption properties. We find that Schiff base complexes exhibit high CO2 adsorption capacity and selectivity, making them a promising candidate for use in carbon capture applications. Moreover, we investigate the effect of various parameters such as temperature, and pressure on the CO2 adsorption properties of Schiff base complexes. The Schiff bases possessed tiny Brunauer-Emmett- Teller surface areas (4.7-19.4 m2/g), typical pore diameters of 12.8-29.43 nm, and pore volumes ranging from 0.02-0.073 cm3/g. Overall, our results suggest that synthesized complexes have great potential as an effective media for CO2 storage, which could significantly reduce greenhouse gas emissions and contribute to mitigating climate change. The study provides valuable insights into the design of novel materials for CO2 capture and storage, which is a critical area of research for achieving a sustainable future.
The excellent specifications of electrodes coated with lead dioxide material make it of great importance in the industry. So it was suggested this study, which includes electrodeposition of lead dioxide on graphite substrate, knowing that the electrodeposition of lead dioxide on graphite studied earlier in different ways.
In this work the deposition process for lead dioxide conducted using electrolytic solution containing lead nitrate concentration 0.72 M with the addition of some other material to the solution, such as copper nitrate, nickel nitrate, sodium fluoride and cetyl trimethyl ammonium bromide, but only in very small concentrations. As for the operating conditions, the effect of change potential and temperature as well
... Show MorePorous silicon (P-Si) has been produced in this work by photoelectrochemical (PEC) etching process. The irradiation has been achieved using diode laser of (2 W) power and 810 nm wavelength. The influence of various irradiation times on the properties of P-Si material such as P-Si layer thickness, surface aspect, pore diameter and the thickness of walls between pores as well as porosity and etching rate was investigated by depending on the scanning electron micrograph (SEM) technique and gravimetric measurements.
TiO2 thin films were deposited by Spray Pyrolysis with thickness ((350±25) nm) onto glass substrates at (350°C), and the film was annealed at temperatures (400 and 500)°C. The structural and morphological properties of the thin films (TiO2) were investigated by X-ray diffraction, Field emission scanning electron microscopy and atomic force microscope. The gas sensor fabricated by evaporating aluminum electrodes using the annealed TiO2 thin films as an active material. The sensitivity of the sensors was determined by change the electrical resistance towards NO2 at different working temperatures (200
The target of this study was to study the natural phytochemical components of the head (capsule) of Cynara scolymus cultivated in Iraq. The head (capsule) of plant was extracted by maceration in70% ethanol for 72 hours, and fractioned by hexane, chloroform and ethyl acetate. Preliminary qualitative phytochemical screening was performed on the ethyl acetate fraction for capsule was revealed the presence of flavonoid and aromatic acids. These were examined by (high -performance liquid chromatography) (HPLC diodarray), (high- performance thin-layer chromatography)(HPTLC).
Flavonoids were isolated by preparative layer chromatography and aromatic acid was isolated by preparative high-
... Show MoreAromatic hydrocarbons present in Iraqi national surface water were believed to be raised principally from combustion of various petroleum products, industrial processes and transport output and their precipitation on surface water.
Polycyclic aromatic hydrocarbons (PAHs) were included in the priority pollutant list due to their toxic and carcinogenic nature. The concern about water contamination and the consequent human exposure have encouraged the development of new methods for
PAHs detection and removal.
PAHs, the real contaminants of petroleum matter, were detected in selected sites along Tigris River within Baghdad City in summer and winter time, using Shimadzu high performance liquid chromatography (HPLC) system.
Analysi
The Reversed Phase High Performance Liquid Chromatography (RP-HPLC) has been used for the separation of Poly aromatic hydrocarbons(PAHs) by using column Reprosil 100 C 18 which was found to be a suitable one for this purpose. The result showed that using mobile phase of (Acetonitrile-water) Reversed Phase HPLC , flow rate of (1.2 ml/min) , column temperature (30CËš) and wave length of (254nm), give a complete separation with a good resolution . The total separation time was less than 20 min. The result of the study showed that the vegetables of Baghdad city were polluted by poly aromatic hydrocarbons(PAHs) in different places where samples taken because of drainage of the heavy water ,industrial trash and trash of oil colanders. -
... Show MoreThe objective of the present study is to determine the effect of Kaolin as a fuel oil additive to minimize the fireside corrosion of superheater boiler tubes of ASTM designation (A213-T22) by increasing the melting point of the formed slag on the outside tubes surface, through the formation of new compounds with protective properties to the metal surface. The study included measuring corrosion rates at different temperatures with and without additive use with various periods of time, through crucible test method and weight loss technique.
A mathematical model represents the relation between corrosion rate and the studied variables, is obtained using statistical regression analysis. Using this model,
... Show MoreBackground Obstructing dentinal tubules is a valuable approach for managing dentin hypersensitivity. Although various agents promote dentin remineralization, direct comparisons between theobromine, bioactive glass (BAG), and nano-hydroxyapatite (Nano-HAP) under simulated oral conditions remain limited. To fill this gap, this in vitro study aimed to evaluate and compare the effectiveness of these three treatments on exposed cervical dentin. The assessment focused on their chemical, morphological, and mechanical effects on dentin. Materials and methods Forty-eight human dentin slabs were obtained from the cervical portions of twelve sound premolar teeth. Baseline Raman spectroscopy and VMH tests were done to exclude outliers. All specimens we
... Show MoreAbstract This research investigates how activated carbon (AC) was synthesized from potato peel waste (PPW). Different ACs were synthesized under the atmosphere's conditions during carbonation via two activation methods: first, chemical activation, and second, carbon dioxide-physical activation. The influence of the drying period on the preparation of the precursor and the methods of activation were investigated. The specific surface area and pore volume of the activated carbon were estimated using the Brunauer–Emmett–Teller method. The AC produced using physical activation had a surface area as high as 1210 m2/g with a pore volume of 0.37 cm3/g, whereas the chemical activation had a surface area of 1210 m2/g with a pore volume of 0.34 c
... Show MoreSteady conjugate natural convection heat transfers in a two-dimensional enclosure filled with fluid saturated porous medium is studied numerically. The two vertical boundaries of the enclosure are kept isothermally at same temperature, the horizontal upper wall is adiabatic, and the horizontal lower wall is partially heated. The Darcy extended Brinkman Forcheimer model is used as the momentum equation and Ansys Fluent software is utilized to solve the governing equations. Rayleigh number (1.38 ≤ Ra ≤ 2.32), Darcy number (3.9 * 10-8), the ratio of conjugate wall thickness to its height (0.025 ≤ W ≤ 0.1), heater length to the bottom wall ratio (1/4 ≤ ≤ 3/4) and inclination angle (0°, 30° and 60°) are the main consid
... Show More