Carbon dioxide (CO2) capture and storage is a critical issue for mitigating climate change. Porous aromatic Schiff base complexes have emerged as a promising class of materials for CO2 capture due to their high surface area, porosity, and stability. In this study, we investigate the potential of Schiff base complexes as an effective media for CO2 storage. We review the synthesis and characterization of porous aromatic Schiff bases materials complexes and examine their CO2 sorption properties. We find that Schiff base complexes exhibit high CO2 adsorption capacity and selectivity, making them a promising candidate for use in carbon capture applications. Moreover, we investigate the effect of various parameters such as temperature, and pressure on the CO2 adsorption properties of Schiff base complexes. The Schiff bases possessed tiny Brunauer-Emmett- Teller surface areas (4.7-19.4 m2/g), typical pore diameters of 12.8-29.43 nm, and pore volumes ranging from 0.02-0.073 cm3/g. Overall, our results suggest that synthesized complexes have great potential as an effective media for CO2 storage, which could significantly reduce greenhouse gas emissions and contribute to mitigating climate change. The study provides valuable insights into the design of novel materials for CO2 capture and storage, which is a critical area of research for achieving a sustainable future.
The Corrosion protection effectiveness of Alimina(Al2O3,50nm)and Zinc oxide (ZnO,30nm) nanoparticales were studied on carbon steel and 316 stainless steel alloys in saline water (3.5%NaCl)at four temperatures: (20,30,40,50 OC)using three electrodes potentiostat. An average corrosion protection efficiencies of 65 %and 80% was achieved using Al2O3 NP's on carbon steel and stainless steel samples respectively, and it seems that no effect of rising temperature on the performances of the coated layers. While ZnO NP'S showed protection efficiency around 65% for the two alloys and little effected by temperature rising on the performanes of the coated layers. The morphology of the coated spesiemses was examined by Atomic force microscope.
Using photo electrochemical etching technique (PEC), porous silicon (PS) layers were produced on n-type silicon (Si) wafers to generate porous silicon for n-type with an orientation of (111) The results of etching time were investigated at: (5,10,15 min). X-ray diffraction experiments revealed differences between the surface of the sample sheet and the synthesized porous silicon. The largest crystal size is (30 nm) and the lowest crystal size is (28.6 nm) The analysis of Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscope (FESEM) were used to research the morphology of porous silicon layer. As etching time increased, AFM findings showed that root mean square (RMS) of roughness and po
... Show MoreEthanol as a solvent, a precursor of titanium isopropoxide and a stabilizer of either hydrochloric acid or ammonium hydroxide was used to prepare a titanium dioxide aqueous solution. The aqueous solutions with different values of pH and the morphology of the resultant reaction of the nanoparticles of titanium dioxide were investigated. The X-ray diffraction showed that at low temperatures and with acidic solutions, rutile structures are more favorable to grow on titanium dioxide synthesized, while at low and average temperatures and with base solutions, anatase phase is more pronounced. The crystalline form and the re-confirmation of the crystallite size growth were observed by the scanning electron microscopy. The atomic force micr
... Show MoreThis study was aimed to investigat integrated system for in vitro growth of paulownia plants by assessing the efficacy of chlorine dioxide (ClO2) as an alternative to autoclave in sterilizing culture medium. Therefore, this study was devised to compare autoclave sterilization at three different times (5, 10, and 15) minutes and three different concentrations of ClO2 (0, 0.4, 0,8, 1) mg/L. The results showed that, compared with (0.4) mg/L concentration, concentrations of (0.8 and 1) mg/L are more effective at sterilizing the culture medium. ClO2 sterilization improved individual single node growth more than autoclave sterilization. Since ClO2 is non-toxic, it could be used as a safe alternative to autoclave when propagating paulown
... Show MoreEthanol as a solvent, a precursor of titanium isopropoxide and a stabilizer of either hydrochloric acid or ammonium hydroxide was used to prepare a titanium dioxide aqueous solution. The aqueous solutions with different values of pH and the morphology of the resultant reaction of the nanoparticles of titanium dioxide were investigated. The X-ray diffraction showed that at low temperatures and with acidic solutions, rutile structures are more favorable to grow on titanium dioxide synthesized, while at low and average temperatures and with base solutions, anatase phase is more pronounced. The crystalline form and the re-confirmation of the crystallite size growth were observed by the scanning electron microscopy. The atomi
... Show MoreThis research deals with the nature of the Turkish attitude towards the events of the Arab Spring which the Arab region witnessed recently, as this attitude is characterized by hesitation and utter confusion about those events at its beginning. However, the development of events and the consequent repercussions led the Turkish decision makers of the foreign policy to reconsider their attitude towards those events for political, economic, cultural and social motives.
Background Obstructing dentinal tubules is a valuable approach for managing dentin hypersensitivity. Although various agents promote dentin remineralization, direct comparisons between theobromine, bioactive glass (BAG), and nano-hydroxyapatite (Nano-HAP) under simulated oral conditions remain limited. To fill this gap, this in vitro study aimed to evaluate and compare the effectiveness of these three treatments on exposed cervical dentin. The assessment focused on their chemical, morphological, and mechanical effects on dentin. Materials and methods Forty-eight human dentin slabs were obtained from the cervical portions of twelve sound premolar teeth. Baseline Raman spectroscopy and VMH tests were done to exclude outliers. All specimens we
... Show MoreAn experimental work has been done to study the major factors that affect the axial dispersion of some hydrocarbons during liquid-liquid miscible displacement. Kerosene and gas oil are used as displacing phase while seven liquid hydrocarbons of high purity represent the displaced phase, three of the liquids are aromatics and the rest are of paraffinic base. In conducting the experiments, two packed beds of different porosity and permeability are used as porous media.
The results showed that the displacement process is not a piston flow, breakthrough of displacing fluids are shown before one pore volume has been injected. The processes are stable with no evidence of viscous fingering.
Dispersion model as a
... Show More