Corona virus sickness has become a big public health issue in 2019. Because of its contact-transparent characteristics, it is rapidly spreading. The use of a face mask is among the most efficient methods for preventing the transmission of the Covid-19 virus. Wearing the face mask alone can cut the chance of catching the virus by over 70\%. Consequently, World Health Organization (WHO) advised wearing masks in crowded places as precautionary measures. Because of the incorrect use of facial masks, illnesses have spread rapidly in some locations. To solve this challenge, we needed a reliable mask monitoring system. Numerous government entities are attempting to make wearing a face mask mandatory; this process can be facilitated by using face mask detection software based on AI and image processing techniques. For face detection, helmet detection, and mask detection, the approaches mentioned in the article utilize Machine learning, Deep learning, and many other approaches. It will be simple to distinguish between persons having masks and those who are not having masks using all of these ways. The effectiveness of mask detectors must be improved immediately. In this article, we will explain the techniques for face mask detection with a literature review and drawbacks for each technique.
Rapid development has achieved in treating tumor to stop malignant cell growth and metastasis in the past decade. Numerous researches have emerged to increase potency and efficacy with novel methods for drug delivery. The main objective of this literature review was to illustrate the impact of current new targeting methods to other previous delivering systems to select the most appropriate method in cancer therapy. This review first gave a brief summary of cancer structure and highlighted the main roles of targeting systems. Different types of delivering systems have been addressed in this literature review with focusing on the latest carrier derived from malarial protein. The remarkable advantages and main limitations of the later
... Show MoreThe multiple linear regression model is an important regression model that has attracted many researchers in different fields including applied mathematics, business, medicine, and social sciences , Linear regression models involving a large number of independent variables are poorly performing due to large variation and lead to inaccurate conclusions , One of the most important problems in the regression analysis is the multicollinearity Problem, which is considered one of the most important problems that has become known to many researchers , As well as their effects on the multiple linear regression model, In addition to multicollinearity, the problem of outliers in data is one of the difficulties in constructing the reg
... Show MoreThe experiment aimed to compare different methods of measuring the Feed pellet durability through the effect of pellet die speeds and the particle size (mill sieve holes diameter). Feed pellet durability was studied in four different ways: pellet direct measurement (%), pellet lengths (%), pellet water absorption (%), pellet durability by drop box device (%), pellet durability by air pressure device (%). Three pellet die speeds 280, 300, and 320 rpm, three mill sieve holes diameter 2, 4, and 6 mm, have been used. The results showed that increasing the pellet die speeds from 280 to 300 then to 320 rpm led to a significant decrease in the feed pellet durability by direct measurement, drop box device, and air pressure device, while pel
... Show MoreCurrently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of
... Show MoreIn this article, we will present a quasi-contraction mapping approach for D iteration, and we will prove that this iteration with modified SP iteration has the same convergence rate. At the other hand, we prove that the D iteration approach for quasi-contraction maps is faster than certain current leading iteration methods such as, Mann and Ishikawa. We are giving a numerical example, too.
An experimental study on a KIA pride (SAIPA 131) car model with scale of 1:14 in the wind tunnel was made beside the real car tests. Some of the modifications to passive flow control which are (vortex generator, spoiler and slice diffuser) were added to the car to reduce the drag force which its undesirable characteristic that increase fuel consumption and exhaust toxic gases. Two types of calculations were used to determine the drag force acting on the car body. Firstly, is by the integrating the values of pressure recorded along the pressure taps (for the wind tunnel and the real car testing), secondly, is by using one component balance device (wind tunnel testing) to measure the force. The results show that, the average drag estimated on
... Show MoreThe interests toward developing accurate automatic face emotion recognition methodologies are growing vastly, and it is still one of an ever growing research field in the region of computer vision, artificial intelligent and automation. However, there is a challenge to build an automated system which equals human ability to recognize facial emotion because of the lack of an effective facial feature descriptor and the difficulty of choosing proper classification method. In this paper, a geometric based feature vector has been proposed. For the classification purpose, three different types of classification methods are tested: statistical, artificial neural network (NN) and Support Vector Machine (SVM). A modified K-Means clustering algorithm
... Show MoreIn this paper, the effective computational method (ECM) based on the standard monomial polynomial has been implemented to solve the nonlinear Jeffery-Hamel flow problem. Moreover, novel effective computational methods have been developed and suggested in this study by suitable base functions, namely Chebyshev, Bernstein, Legendre, and Hermite polynomials. The utilization of the base functions converts the nonlinear problem to a nonlinear algebraic system of equations, which is then resolved using the Mathematica®12 program. The development of effective computational methods (D-ECM) has been applied to solve the nonlinear Jeffery-Hamel flow problem, then a comparison between the methods has been shown. Furthermore, the maximum
... Show MoreIn this paper Volterra Runge-Kutta methods which include: method of order two and four will be applied to general nonlinear Volterra integral equations of the second kind. Moreover we study the convergent of the algorithms of Volterra Runge-Kutta methods. Finally, programs for each method are written in MATLAB language and a comparison between the two types has been made depending on the least square errors.
The phytoremediation technique has become very efficient for treating soil contaminated with heavy metals. In this study, a pot experiment was conducted where the Dodonaea plant (known as hops) was grown, and soil previously contaminated with metals (Zn, Ni, Cd) was added at concentrations 100, 50, 0 mg·kg-1 for Ni and Zn, and at concentrations of 0, 5, 10 mg·kg-1 for cadmium. Irrigation was done within the limits of the field capacity of the soil. Cadmium, nickel and zinc was estimated in the soil to find out the capacity of plants to the absorption of heavy and contaminated metals by using bioconcentration factors (BCFs), bioaccumulation coefficient (BAC) and translocation factor (TF). Additionally, BCF values of both Ni and Zn were l
... Show More