In this study, aluminum nanoparticles (Al NPs) were prepared using explosive strips method in double-distilled deionized water (DDDW), where the effect of five different currents (25, 50, 75, 100 and 125 A) on particle size and distribution was studied. Also, the explosive strips method was used to decorate zinc oxide particles with Al particles, where Al particles were prepared in suspended from zinc oxide with DDDW. Transmission electron microscopy (TEM), UV-visible absorption spectroscopy, and x-ray diffraction are used to characterize the nanoparticles. XRD pattern were examined for three samples of aluminum particles and DDDW prepared with three current values (25, 75 and 125 A) and three samples prepared with the same currents for zinc oxide suspension with aluminum particles and DDDW. It was observed that when increasing the percentage of prepared Al particles in the suspension consisting of zinc oxide and DDDW, the energy gap of zinc oxide gradually decreased in the samples. Transmission electron microscopy (TEM) analysis is conducted to examine the size, shape, and aggregation of the nanoparticles. The TEM images reveal that the Al nanoparticles exhibit a quasi-spherical shape. The particle size distribution analysis shows that the average crystal size of Al decreases with an increase in the detonation current. This method yields particle with average sizes within the range of 20 to 90 nm. When decorating zinc oxide particles by generating Al nanoparticles inside a suspension of zinc oxide and DDDW, the size of the resulting particles increases with increasing current. © ALL RIGHTS RESERVED.
This study was carried out to evaluate parasitological and immunological of the effect of chitosan and chitosannanoparticles loaded with spiramycin on toxoplasmosis infected mice. After injection intra peritoneal with 103viable tachyzoites for acute infection, treatments given for seven days. Peritoneal fluid examination revealed a significant decrease in the number of Toxoplasmagondiitachyzoites in all treated infected mice compared with infected non-treated. The combined therapy gave better results than single. The best effect was observed in group of mice treated with spiramycin combined with chitosan nanoparticles. Also immunoglobulin Ig Manti body and gamma Interferon (INFγ), Tumor Necrosis Factor alpha (TNF-α) cytokines responses ag
... Show MoreSilver nanoparticles synthesized by different species
Background: Nowadays, the environmentally friendly procedures must be developed to avoid using harmful compounds in synthesis methods. Their increase interest in creating and researching silver nanoparticles (AgNPs) because of their numerous applications in many fields especially medical fields such as burn, wound healing, dental and bone implants, antibacterial, viral, fungal, and arthropodal activities. Biosynthesis of nanoparticles mediated pigments have been widely used as antimicrobial agent against microorganisms. Silver nanoparticles had synthesized by using melanin from locally isolate Pseudomonas aeruginosa, and used as antimicrobial activity against pathogenic microorganisms. Aim of the study: Isolation of Pseudomonas aeruginosa
... Show MoreIn this paper the effect of mixing TiO2 nanoparticles with epoxy resin is studied. The TiO2 nanoparticles would be synthesis and characterized by scanning electron microscopy (SEM), XRD FTIR, for two particle sizes of 50 and 25 nm. The thermal conductivity is measured with and without composite epoxy resin; the results showed that the thermal conductivity was increased as nanoparticle concentration increased too. The thermal conductivity was increased as particle size decreased.
In this paper flotation method experiments were performed to investigate the removal of lead and zinc. Various parameters such as pH, air flow rate, collector concentrations, collector type and initial metal concentrations were tested in a bubble column of 6 cm inside diameter. High recoveries of the two metals have been obtained by applying the foam flotation process, and at relatively short time 45 minutes . The results show that the best removal of lead about 95% was achieved at pH value of 8 and the best removal of zinc about 93% was achieved
at pH value of 10 by using 100 mg/l of Sodium dodecylsulfate (SDS) as a collector and 1% ethanol as a frother. The results show that the removal efficiency increased with increasing initial m
المستودع الرقمي العراقي. مركز المعلومات الرقمية التابع لمكتبة العتبة العباسية المقدسة
Well-dispersed Cu2FeSnSe4 (CFTSe) nanoparticles were first synthesized using the hot-injection method. The structure and phase purity of as-synthesized CFTSe nanoparticles were examined by X-ray diffraction (XRD) and Raman spectroscopy. Their morphological properties were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The average particle sizes of the nanoparticles were about 7-10 nm. The band gap of the as-synthesized CFTS nanoparticles was determined to be about 1.15 eV by ultraviolet-visible (UV-Vis) spectrophotometry. Photoelectrochemical characteristics of CFTSe nanoparticles were also studied, which indicated their potential application in solar energy water splitting.
Cadmium sulfide photodetector was fabricated. The CdS nano
powder has been prepared by a chemical method and deposited as a
thin film on both silicon and porous p- type silicon substrates by spin
coating technique. Structural, morphological, optical and electrical
properties of the prepared CdS nano powder are studied. The X-ray
analysis shows that the obtained powder is CdS with predominantly
hexagonal phase. The Hall measurements show that the nano powder
is n-type with carrier concentration of about (-5.4×1010) cm-3. The
response time of fabricated detector was measured by illuminating
the sample with visible radiation and its value was 5.25 msec. The
specific detectivity of the fabricated det