This Book is the second edition that intended to be textbook studied for undergraduate/ postgraduate course in mathematical statistics. In order to achieve the goals of the book, it is divided into the following chapters. Chapter One introduces events and probability review. Chapter Two devotes to random variables in their two types: discrete and continuous with definitions of probability mass function, probability density function and cumulative distribution function as well. Chapter Three discusses mathematical expectation with its special types such as: moments, moment generating function and other related topics. Chapter Four deals with some special discrete distributions: (Discrete Uniform, Bernoulli, Binomial, Poisson, Geometric, Negative Binomial and Hypergeometric) with their mathematical formulas of p.m.f., C.D.F. and m.g.f. Chapter Five deals with some special continuous distributions: (Uniform, Normal, Exponential, Gamma and Beta) with their mathematical formulas of p.m.f., C.D.F. and m.g.f. Many solved examples are intended in this book (obtaining mean and variance of distributions by m.g.f.). Chapter Six introduces univariate discrete and continuous transformations, i.e., one dimensional variables and their yielding probability distributions. Chapter Seven devotes to truncation of distributions from left, right or both sides, beside the probability distribution of order statistics. Chapter Eight discusses mathematical features of joint, marginal and conditional distributions, as well as independency via covariance and correlation of bivariate distributions. Chapter Nine deals with some special topics such as getting distribution for some transformation from multidimensional random variables by using moment generating function (m.g.f.) and cumulative distribution function (C.D.F.) Many solved examples (about 100) are intended in this book, in addition to a variety of unsolved relied problems (about 150) at the end of each chapter to enrich the statistical knowledge of our readers.
Background:
Multiple sclerosis is a chronic disease believed to be the result of autoimmune disorders of the central nervous system, characterised by inflammation, demyelination, and axonal transection, affecting primarily young adults. Disease modifying therapies have become widely used, and the rapid development of these drugs highlighted the need to update our knowledge on their short- and long-term safety profile.
Objective:
The study aim is to evaluate the impact of disease-modifying treatments on thyroid functions and thyroid autoantibodies with subsequent effects on the outcome of the disease.
Materials and Methods:
A retro prospective study
... Show MoreWater pollution as a result of contamination with dye-contaminating effluents is a severe issue for water reservoirs, which instigated the study of biodegradation of Reactive Red 195 and Reactive Blue dyes by E. coli and Bacillus sp. The effects of occupation time, solution pH, initial dyes concentrations, biomass loading, and temperature were investigated via batch-system experiments by using the Design of Experiment (DOE) for 2 levels and 5 factors response surface methodology (RSM). The operational conditions used for these factors were optimized using quadratic techniques by reducing the number of experiments. The results revealed that the two types of bacteria had a powerful effect on biodegradable dyes. The regression analysis reveale
... Show MoreThe research presents a case study of collecting materials and raw materials in a visual space that allows them to form a perception and meanings that inform the recipient by reconstructing them and inserting them into the surface of the artistic work and in such a way that the aesthetic act consists of a variety of media, touches and surfaces. The overlap of races within an environment characterized by unity. That is why the researcher in chapter one presented the problem of research, and the focus was on studying the multiplicity of materials and their aesthetic and functional role in the structure of creative work. The aim of the research is enhanced to identify the aesthetic performance function of the multiplicity of ores in the col
... Show MoreIn the present paper, we will study the generalized ( p, q) -type and
generalized lower ( p, q) -type of an entire function in several complex
variables with respect to the proximate order with index pair ( p, q) are
defined and their coefficient characterizations are obtained.
This paper investigates the effect of magnetohydrodynamic (MHD) of an incompressible generalized burgers’ fluid including a gradient constant pressure and an exponentially accelerate plate where no slip hypothesis between the burgers’ fluid and an exponential plate is no longer valid. The constitutive relationship can establish of the fluid model process by fractional calculus, by using Laplace and Finite Fourier sine transforms. We obtain a solution for shear stress and velocity distribution. Furthermore, 3D figures are drawn to exhibit the effect of magneto hydrodynamic and different parameters for the velocity distribution.
This paper deals with, Bayesian estimation of the parameters of Gamma distribution under Generalized Weighted loss function, based on Gamma and Exponential priors for the shape and scale parameters, respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation. Based on Monte Carlo simulation method, those estimators are compared in terms of the mean squared errors (MSE’s).
In this article, the partially ordered relation is constructed in geodesic spaces by betweeness property, A monotone sequence is generated in the domain of monotone inward mapping, a monotone inward contraction mapping is a monotone Caristi inward mapping is proved, the general fixed points for such mapping is discussed and A mutlivalued version of these results is also introduced.
In this paper, the peristaltic flow under the impact of heat transfer, rotation and induced magnetic field of a two dimensional for the Bingham plastic fluid is discussed. The coupling among of momentum with rotational, energy and the induced magnetic field equations are achieved by the perturbation approximation method and the mathematica software to solve equations that are nonlinear partial differential equations. The fluid moves in an asymmetric channel, and assumption the long wavelength and low Reynolds number, approximation are used for deriving a solution of the flow. Expression of the axial velocity, temperature, pressure gradient, induced magnetic field, magnetic force, current density are developed the eff
... Show MoreTrimmed Linear moments (TL-moments) are natural generalization of L-moments that do not require the mean of the underlying distribution to exist. It is known that the sample TL-moments is unbiased estimators to corresponding population TL-moment. Since different choices for the amount of trimming give different values of the estimators it is important to choose the estimator that has minimum mean squares error than others. Therefore, we derive an optimal choice for the amount of trimming from known distributions based on the minimum errors between the estimators. Moreover, we study simulation-based approach to choose an optimal amount of trimming and maximum like hood method by computing the estimators and mean squares error for range of
... Show MoreIndustrial characteristics calculations concentrated on the physical properties for break down voltage in sf6, cf4 gases and their mixture with different concentrations are presented in our work. Calculations are achieved by using an improved modern code simulated on windows technique. Our results give rise to a compatible agreement with the other experimental published data.