The new multidentate Schiff-base (E)-6,6′-((1E,1′E)-(ethane-1,2-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-ylidene))bis(4-methyl-2-((E)(pyridine-2-ylmethylimino)methyl)phenol) H2L and its polymeric binuclear metal complexes with Cr(III), Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) are reported. The reaction of 2,6-diformyl-4-methyl-phenol with ethylenediamine in mole ratios of 2:1 gave the precursor 3,3′-(1E,1′E)-(ethane-1,2-diylbis(azan-1-yl-1ylidene))bis(methan-1-yl-1-ylidene)bis(2-hydroxy-5-methylbenzaldehyde) W. Condensation of the precursor with 2-(amino-methyl)pyridine in mole ratios of 1:2 gave the new N6O2 multidentate Schiff-base ligand H2L. Upon complex formation, the ligand behaves as a dibasic octadentate species with the involvement of the nitrogen atoms of the pyridine groups in coordination for all complexes. The mode of bonding and overall geometry of the complexes were determined through physico-chemical and spectroscopic methods. These studies revealed octahedral geometries for Cr(III), Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Cd(II) and Hg(II) complexes of general formulae [Cr III 2 (L)Cl2]Cl2, [Ni II 2 (L)(H2O)2]Cl2 and [M2(L)Cl2] and five co-ordinate Zn(II) complex of general formula [Zn II 2 (L)]Cl2.
The new liganed Schiff base named [(E)-3-hydroxy-4-((3,4,5- trimethoxybenzylidene)amino) naphthalene-1- sulfonic acid] was synthesized from 3,4,5-trimethoxybenzyldehyde and 1-amino-2-aphthol-4- sulfonic acid in equal molar ratio. A series of new metal complexes' of the common molecular formulation [M(L)2(H2O)2].H2O are synthesized and characterized by IR, UV–Vis spectra, mass spectra, atomic absorption, elemental analyses, chloride content, magnetic susceptibility and conductivity measurements as well as thermo gravimetric analysis (TGA, DSC). Consistent with results of the magnetic and spectral studies, the advised geometrical structures for all of the prepared complexes have been octahedral formula
This new azo dye 3-((2-(1H-indol-3-yl) ethyl) diazenyl) quinoline-2-ol was subsequently used to prepare a series of complexes with the metal ions of Cr+3, Cu+2, VO+2, Mn+2and Mo+6. The compounds identified by 1H and 13C-NMR, FT-IR, UV-Vis, mass spectroscopy, as well as TGA, DSC, and C.H.N., conductivity, magnetic susceptibility, metal and chlorine content. The results showed that the ligand behaves in a bidantate, and that the complexes gave octahedral, excepting for VO+2 square pyramid was given, that all complexes are non-electrolytes. The effectiveness of mention the compounds in inhibiting free radicals was evaluated by the ability to act as an antioxidant was measured using DPPH as a free radical and gallic acid as a standard s
... Show MoreThe reaction of poly (vinyl alcohol) (PV A) with Urea in (DMSO)
resulted in uerthanised oxim, wr,ich reacted with diacetylmonoxime in a (DY.ISOfmethanol) to give anew type (N2) polymeric bidentate imine oxime ligand [HL], The ligand was reacted with MCh (where M= Co, Cu, and Hg). Under reflux in a (DMF/Methanol) mixture with (I:1) ratio to give Complexes of the general formula [M (T.)2]X, (where M=
Co,Hg, Cu). All .:ompouncs have been characterized by spectroscopic
methods [IR, U.V.-Vis, A tomi<;absorption] microanalysis along with conductivity measurements, from the above:: data the proposed molecular structure for Co,Cu, and Hg is a
... Show MoreMetal complexes of Cu (II), Fe (III) and Mn (II) with Quinaldic acid (L1) and 1, 10-Phenathroline (L2) are synthesized and characterized by standaral physic- chemical procedures (element analysis, metal analysis, FTIR, Uv-Vis, magnetic moment and conductometeric measurements). On the base of these studies, mononuclear and six coordinated octahedral geometry and nonelectrolyte of these complexes have been proposed. The standard heat of formation (?Hºf) and binding energy (?Eb) for the free ligands and their complexes are calculated by using the PM3 method at 273K of Hyperchem.-8 program. The complexes are more stable than their ligands. Moreover, the electrostatic potential of free ligands are measured to investigate the reactive site of th
... Show MoreThe reaction of poly (vinyl alcohol) (PV A) with Urea in (DMSO) resulted in uerthanised oxim, wr,ich reacted with diacetylmonoxime in a (DY.ISOfmethanol) to give anew type (N2) polymeric bidentate imine oxime ligand [HL], The ligand was reacted with MCh (where M= Co, Cu, and Hg). Under reflux in a (DMF/Methanol) mixture with (I:1) ratio to give Complexes of the general formula [M (T.)2]X, (where M= Co,Hg, Cu). All .:ompouncs have been characterized by spectroscopic methods [IR, U.V.-Vis, A tomi<;absorption] microanalysis along with conductivity measurements, from the above:: data the proposed molecular structure for Co,Cu, and Hg is a distorted. Tetrahedml
Our research aimed to find a new material that can be an efficient heavy metal free flame retardant for plasticized poly(vinyl chloride) comparable to the conventional flame retardants. One of these extraordinary materials is Oxydtron using as an admixture for concrete. Oxydtron showed unexpected efficiency as a flame retardant agent and an excellent heat stabilizer as well. Limiting oxygen index (LOI), static heat stability, Congo-red, and differential scanning calorimetry (DSC) were carried out. The thermal tests proved that Oxydtron is suitable to improve plasticized poly(vinyl chloride) performance at high temperatures applications in terms of flame retarding and thermal stability
The current study was designed to remove Lead, Copper and Zinc from industrial wastewater using Lettuce leaves (Lactuca sativa) within three forms (fresh, dried and powdered) under some environmental factors such as pH, temperature and contact time. Current data show that Lettuce leaves are capable of removing Lead, Copper and Zinc ions at significant capacity. Furthermore, the powder of Lettuce leaves had highest capability in removing all metal ions. The highest capacity was for Lead then Copper and finally Zinc. However, some examined factors were found to have significant impacts upon bioremoval capacity of studied ions, where best biosorption capacity was found at pH 4, at temperature 50º C and contact time of 1 hour.
Soils that cause effective damages to engineer structures (such as pavement and foundation) are called problematic or difficult soils (include collapsible soil, expansive soil, etc.). These damages occur due to poor or unfavorited engineering properties, such as low shear strength, high compressibility, high volume changes, etc. In the case of expansive soil, the problem of the shrink-swell phenomenon, when the soil reacts with water, is more pronounced. To overcome such problems, soils can be treated or stabilized with many stabilization ways (mechanical, chemical, etc.). Such ways can amend the unfavorited soil properties. In this review, the pozzolanic materials have been selected to be presented and discussed as chem
... Show More