In this paper, certain types of regularity of topological spaces have been highlighted, which fall within the study of generalizations of separation axioms. One of the important axioms of separation is what is called regularity, and the spaces that have this property are not few, and the most important of these spaces are Euclidean spaces. Therefore, limiting this important concept to topology is within a narrow framework, which necessitates the use of generalized open sets to obtain more good characteristics and preserve the properties achieved in general topology. Perhaps the reader will realize through the research that our generalization preserved most of the characteristics, the most important of which is the hereditary property. Two types of regular spaces have been presented, namely the topological space Rp and the topological space S-Rp. The properties of these two spaces and their relationship with each other, as well as the effect of functions on them, have been studied. In addition several theorems have been proved regarding the sufficient and necessary conditions to make the topological spaces Rp-regular or S-Rp-regular. The above concepts have been linked with a new type of Hausdorff space and the concepts under study are reinforced with examples.
Let R1be a commutative2ring with identity and M be a unitary R-module. In this6work we7present almost pure8ideal (submodule) concept as a9generalization of pure10ideal (submodule). lso, we1generalize some9properties of8almost pure ideal (submodule). The 7study is almost regular6ring (R-module).
The pre - equilibrium and equilibrium double differential cross
sections are calculated at different energies using Kalbach Systematic
approach in terms of Exciton model with Feshbach, Kerman and
Koonin (FKK) statistical theory. The angular distribution of nucleons
and light nuclei on 27Al target nuclei, at emission energy in the center
of mass system, are considered, using the Multistep Compound
(MSC) and Multistep Direct (MSD) reactions. The two-component
exciton model with different corrections have been implemented in
calculating the particle-hole state density towards calculating the
transition rates of the possible reactions and follow up the calculation
the differential cross-sections, that include MS
We introduce in this paper some new concepts in soft topological spaces such as soft simply separated, soft simply disjoint, soft simply division, soft simply limit point and we define soft simply connected spaces, and we presented soft simply Paracompact spaces and studying some of its properties in soft topological spaces. In addition to introduce a new types of functions known as soft simply
Pre-eclampsia complicates 2-8% of all pregnancies and it is one of the leading causes of maternal mortality and pre-term delivery in the world. Unfortunately, there is scarcity of documents discussing the circulating level of several essential trace elements in Pre-eclampsia patients in Baghdad especially in the last trimester of the pregnancy. The present study was designed to quantitative evaluation the whole blood concentration of two trace elements, copper (Cu), and iron(Fe), in pre-eclamptic women in the third trimester of pregnancy. The study was conducted on 18 Pre-eclamptic pregnant women as patients group with clinical detected high blood pressure ≥140/90 mmHg and 13 normotensive pregnant women as control group from Al-Alwiya
... Show MoreSequences spaces , m , p have called quasi-Sobolev spaces were introduced by Jawad . K. Al-Delfi in 2013 [1]. In this paper , we deal with notion of quasi-inner product space by using concept of quasi-normed space which is generalized to normed space and given a relationship between pre-Hilbert space and a quasi-inner product space with important results and examples. Completeness properties in quasi-inner product space gives us concept of quasi-Hilbert space . We show that , not all quasi-Sobolev spa
... Show MoreIn this research and by using the concept of , a new set of near set which is nano-Ἷ-semi-g-closed set was defined. Some properties and examples with illustrative table and an applied example were presented.
The flow measurements have increased importance in the last decades due to the shortage of water resources resulting from climate changes that request high control of the available water needed for different uses. The classical technique of open channel flow measurement by the integrating-float method was needed for measuring flow in different locations when there were no available modern devices for different reasons, such as the cost of devices. So, the use of classical techniques was taken place to solve the problem. The present study examines the integrating float method and defines the parameters affecting the acceleration of floating spheres in flowing water that was analyzed using experimental measurements. The me
... Show MoreBackground: Laparoscopic surgery for
appendicitis is now a well established and
advanced method of performing general surgical
procedures.
Objectives: To compare the outcome of
laparoscopic and open appendectomies in terms
of operative time, analgesic requirement,
postoperative complications, hospital stay, return
to normal activity and condition of scar.
Methods: This prospective study was carried
out from 1stMay 2008-1st January 2010, involving
110 patients (45 male and 65 female) with
features suggestive of acute appendicitis were
divided into 45 patients laparoscopic
appendectomy (LA) group and 65 patients open
appendectomy (OA) group, after taking informed
consent. LA was done with the
R. Vasuki [1] proved fixed point theorems for expansive mappings in Menger spaces. R. Gujetiya and et al [2] presented an extension of the main result of Vasuki, for four expansive mappings in Menger space. In this article, an important lemma is given to prove that the iteration sequence is Cauchy under suitable condition in Menger probabilistic G-metric space (shortly, MPGM-space). And then, used to obtain three common fixed point theorems for expansive type mappings.
In this article, the partially ordered relation is constructed in geodesic spaces by betweeness property, A monotone sequence is generated in the domain of monotone inward mapping, a monotone inward contraction mapping is a monotone Caristi inward mapping is proved, the general fixed points for such mapping is discussed and A mutlivalued version of these results is also introduced.