In this ˑwork, we present theˑ notion of the ˑgraph for a KU-semigroup as theˑundirected simple graphˑ with the vertices are the elementsˑ of and weˑˑstudy the ˑgraph ofˑ equivalence classesˑofˑ which is determinedˑ by theˑ definition equivalenceˑ relation ofˑ these verticesˑ, andˑ then some related ˑproperties areˑ given. Several examples are presented and some theorems are proved. Byˑ usingˑ the definitionˑ ofˑ isomorphicˑ graph, ˑwe showˑ thatˑ the graphˑ of equivalence ˑclasses ˑand the ˑgraphˑof ˑa KU-semigroup ˑ areˑ theˑ sameˑ, in special cases.
Consider the (p,q) simple connected graph . The sum absolute values of the spectrum of quotient matrix of a graph make up the graph's quotient energy. The objective of this study is to examine the quotient energy of identity graphs and zero-divisor graphs of commutative rings using group theory, graph theory, and applications. In this study, the identity graphs derived from the group and a few classes of zero-divisor graphs of the commutative ring R are examined.
In this paper, we will introduce the concept of interval value fuzzy n-fold KU-ideal in KU-algebras, which is a generalization of interval value fuzzy KU-ideal of KU-algebras and we will obtain few properties that is similar to the properties of interval value fuzzy KU-ideal in KU-algebras, see [8]. Also, we construct some algorithms for folding theory applied to KU-ideals in KU-algebras.
In this article, we study some properties of anti-fuzzy sub-semigroup, anti fuzzy left (right, two sided) ideal, anti fuzzy ideal, anti fuzzy generalized bi-ideal, anti fuzzy interior ideals and anti fuzzy two sided ideal of regular semigroup. Also, we characterized regular LA-semigroup in terms of their anti fuzzy ideal.
In this paper, we introduce and discuss an algorithm for the numerical solution of two- dimensional fractional partial differential equation with parameter. The algorithm for the numerical solution of this equation is based on implicit and an explicit difference method. Finally, numerical example is provided to illustrate that the numerical method for solving this equation is an effective solution method.
Background: Mouthwashes used widely as ancillary to mechanical oral hygiene methods. Little information provided about the effect of mouthwashes on ions released from orthodontic brackets. Therefore, the present study has been established to evaluate the effect of different mouthwashes on the corrosion resistance and the biocompatibility of two brands of brackets. Materials and Methods: Eighty premolar stainless steel brackets were used (40 brackets from each brand). They were subdivided into four subgroups (n=10) according to immersion media (deionized distilled water, Corsodyl, Listerine and Silca herb mouthwashes). Each bracket was stored in a closely packed glass tube filled with 15ml of the immersion media and incubated for 45 days at
... Show MoreResearch aimed to:1- Be acquainted to the two types of personality A,B with the members of the teaching staff of Anbar university 2- The level of the motivational achievement among the teaching staff 3- The level of motivational achievement of the teaching staff of( A,B). 4- Differences of the abstract implications of A,B type 5- The relationship between A and B and the motivational achievement.
Research Tools: the researchers followed measure A, B type of Howard Glaser 1978,and measure of Achievement Motivation for Mansoorm1986.
The Result showed: 1. A tendency of the t
... Show MoreIn this work, we study of the concept of a cubic set of a semigroup in KU-algebra. Firstly, we study a cubic sub KU-semigroup and achieve some results in this notion. And then, we get a relation between a cubic sub KU-semi group and a level set of a cubic set. Moreover, we define some cubic ideals of this structure and we found relationships between these ideals.
2010 AMS Classification. 08A72, 03G25, 06F35
An edge dominating set of a graph is said to be an odd (even) sum degree edge dominating set (osded (esded) - set) of G if the sum of the degree of all edges in X is an odd (even) number. The odd (even) sum degree edge domination number is the minimum cardinality taken over all odd (even) sum degree edge dominating sets of G and is defined as zero if no such odd (even) sum degree edge dominating set exists in G. In this paper, the odd (even) sum degree domination concept is extended on the co-dominating set E-T of a graph G, where T is an edge dominating set of G. The corresponding parameters co-odd (even) sum degree edge dominating set, co-odd (even) sum degree edge domination number and co-odd (even) sum degree edge domin
... Show MoreIn this research we prepared shiff bases unilateral claw( benzyl imine aniline ) and Bilateral claw ( benzayal-2-imine phenol ) in high purity reach to 98% , which it's prepared from aromatic amine with aldehydes, it's solid,thermosetting, not dissolved in water in general. Diagnosed prepared article by using infra red spectroscopy (IR) which shows azomethen grop at 1640cm-1 At this diagnosis we suggest tetra headral mechanism in this Circumstances For a reaction.