Preferred Language
Articles
/
HhYxlocBVTCNdQwCCFco
Satellite Images Unsupervised Classification Using Two Methods Fast Otsu and K-means
...Show More Authors

Publication Date
Sat Apr 30 2022
Journal Name
Revue D'intelligence Artificielle
Performance Evaluation of SDN DDoS Attack Detection and Mitigation Based Random Forest and K-Nearest Neighbors Machine Learning Algorithms
...Show More Authors

Software-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne

... Show More
View Publication
Scopus (16)
Crossref (6)
Scopus Crossref
Publication Date
Wed Apr 05 2023
Journal Name
Journal Of Agriculture And Crops
Distribution and Classification of Medicinal Plants in Zakhikhah Area of Al-Anbar Desert
...Show More Authors

This study included the Zakhikhah area in the Al- Anbar desert, which it bounded on the north, east, and west by the Euphrates River and on the south by the Ramadi-Qaim road. Several exploratory field trips were taken to the study area. During this time, a semi-detailed area survey was carried out based on satellite imagery captured by American Land sat-7, topographic maps, and natural vegetation variance. All necessary field tools, including a digital camera and GPS device, were brought to determine the soil type and collect plant samples. All of these visits are planned to cover the entire state of Zakhikhah. All vegetation cover observations, identifying sampling sites and attempting to inventory and collect medicinal plants in t

... Show More
View Publication
Crossref
Publication Date
Tue Nov 03 2020
Journal Name
Iium Medical Journal Malaysia
Role of the Immunohistochemical Marker (Ki67) in Diagnosis and Classification of Hydatidiform Mole
...Show More Authors

Introduction: Since the hallmark of gestational trophoblastic disease is trophoblastic proliferation, Ki67 is regarded as the best marker in studying hydatidiform mole.This study was conducted to evaluate the role of this proliferative marker in distinguishing among hydropic abortion, partial and complete hydatidiform mole. Materials and methods: This is a cross sectional study involving the application of Ki67 on a total of 90 histological samples of curetting materials from molar (partial and complete mole) and non molar hydropic abortion belong to Iraqi females, so three study groups were created. Immunohistochemical expression in villous cytotrophoblasts, syncytiotrophoblasts and stromal cells were recorded separately by three i

... Show More
View Publication
Crossref
Publication Date
Tue Sep 10 2019
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
A classification model on tumor cancer disease based mutual information and firefly algorithm
...Show More Authors

View Publication
Scopus (15)
Crossref (6)
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review
...Show More Authors

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (8)
Crossref
Publication Date
Thu Apr 01 2010
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
The Invariant Moments Based With Wavelet Used To Decide the Authintication and Originality of Images
...Show More Authors

Publication Date
Sat Jan 10 2015
Journal Name
British Journal Of Applied Science & Technology
The Use of Cubic Bezier Interpolation, Biorthogonal Wavelet and Quadtree Coding to Compress Color Images
...Show More Authors

In this paper, an efficient method for compressing color image is presented. It allows progressive transmission and zooming of the image without need to extra storage. The proposed method is going to be accomplished using cubic Bezier surface (CBI) representation on wide area of images in order to prune the image component that shows large scale variation. Then, the produced cubic Bezier surface is subtracted from the image signal to get the residue component. Then, bi-orthogonal wavelet transform is applied to decompose the residue component. Both scalar quantization and quad tree coding steps are applied on the produced wavelet sub bands. Finally, adaptive shift coding is applied to handle the remaining statistical redundancy and attain e

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Wed May 04 2022
Journal Name
Int. J. Nonlinear Anal. Appl.
Knee Meniscus Segmentation and Tear Detection Based On Magnitic Resonacis Images: A Review of Literature
...Show More Authors

The meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when

... Show More
Publication Date
Wed May 31 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Invariant Moments Based With Wavelet Used To Decide the Authintication and Originality of Images
...Show More Authors

 The digital image with  the wavelet tools  is increasing nowadays with MATLAB library, by using  this method based on invariant moments which are  a set of seven moments can be derived from the second and third moments , which can be calculated after converting the image from colored map to gray scale , rescale the image to (512 * 512 ) pixel , dividing the image in to four equal pieces (256 * 256 ) for each piece , then for gray scale image  ( 512 * 512 ) and the four pieces (256 * 256  ) calculate  wavelet with moment and invariant moment, then  store  the result with the author ,owner for this image to build data base for the original image to decide the authority of these images by u

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2011
Journal Name
Journal: Ibn Al-haitham Journal For Pure And Applied Sciences
A Study the effect the direction of the distribution of lighting to improve Images in different lighting by using technique adaptive histogram equalization
...Show More Authors