In this work we define and study new concept of fibrewise topological spaces, namely fibrewise soft topological spaces, Also, we introduce the concepts of fibrewise closed soft topological spaces, fibrewise open soft topological spaces, fibrewise soft near compact spaces and fibrewise locally soft near compact spaces.
Background: Unlike normal EEG patterns, the epileptiform abnormal pattern is characterized by different mor phologies such as the high-frequency oscillations (HFOs) of ripples on spikes, spikes and waves, continuous and sporadic spikes, and ploy2 spikes. Several studies have reported that HFOs can be novel biomarkers in human epilepsy study. S) Method: To regenerate and investigate these patterns, we have proposed three large scale brain network models (BNM by linking the neural mass model (NMM) of Stefanescu-Jirsa 2D (S-J 2D) with our own structural con nectivity derived from the realistic biological data, so called, large-scale connectivity connectome. These models include multiple network connectivity of brain regions at different
... Show MoreLet R be a commutative ring with non-zero identity element. For two fixed positive integers m and n. A right R-module M is called fully (m,n) -stable relative to ideal A of , if for each n-generated submodule of Mm and R-homomorphism . In this paper we give some characterization theorems and properties of fully (m,n) -stable modules relative to an ideal A of . which generalize the results of fully stable modules relative to an ideal A of R.
In high-dimensional semiparametric regression, balancing accuracy and interpretability often requires combining dimension reduction with variable selection. This study intro- duces two novel methods for dimension reduction in additive partial linear models: (i) minimum average variance estimation (MAVE) combined with the adaptive least abso- lute shrinkage and selection operator (MAVE-ALASSO) and (ii) MAVE with smoothly clipped absolute deviation (MAVE-SCAD). These methods leverage the flexibility of MAVE for sufficient dimension reduction while incorporating adaptive penalties to en- sure sparse and interpretable models. The performance of both methods is evaluated through simulations using the mean squared error and variable selection cri
... Show MoreThe process of stocks evaluating considered as a one of challenges for the financial analysis, since the evaluating focuses on define the current value for the cash flows which the shareholders expected to have. Due to the importance of this subject, the current research aims to choose Fama & French five factors Model to evaluate the common stocks to define the Model accuracy in Fama& French for 2014. It has been used factors of volume, book value to market value, Profitability and investment, in addition to Beta coefficient which used in capital assets pricing Model as a scale for Fama & French five factors Model. The research sample included 11 banks listed in Iraq stock market which have me
... Show MoreThis study aimed to identify the quality of the career path and its relation to organizational excellence at King Khalid University in the Faculty of Business from the point of view of the faculty members by identifying the dimensions quality of work-life including (participation of decision making, training and development opportunities, and the balance between personal and work life, and to identify the level of organizational excellence through dimensions ( Excellence of leadership, excellence of the strategy, and excellence of organizational culture). The descriptive approach was used. The questionnaire was a research tool. It consisted of (29) paragraphs, distributed to the entire study community and then received 127
... Show MoreAn analytical expression for the charge density distributions is derived based on the use of occupation numbers of the states and the single particle wave functions of the harmonic oscillator potential with size parameters chosen to reproduce the observed root mean square charge radii for all considered nuclei. The derived expression, which is applicable throughout the whole region of shell nuclei, has been employed in the calculations concerning the charge density distributions for odd- of shell nuclei, such as and nuclei. It is found that introducing an additional parameters, namely and which reflect the difference of the occupation numbers of the states from the prediction of the simple shell model leads to obtain a remarkabl
... Show MoreAbstract
The study aims to identify the extent to which the applied colleges at the University of Technology and Applied Sciences meet the comprehensive quality standards in light of the national education strategy for the 2040 Vision in the Sultanate of Oman. To do this, the researchers used the descriptive approach. They used a questionnaire as a tool for data collection that was applied to (237) administrators, academics, and support functions. The study found that the extent to which the applied colleges at the University of Technology and Applied Sciences meet the comprehensive quality standards in the light of the National Education Strategy 2040 in the Sultanate of Oman recorded a high range. The study als
... Show MoreIs a high degree of economic freedom an important part in the development of the economies of developing countries in the last decade of the twentieth century and the beginning of the twentieth century and the atheist. This is because a test subject (deltoid analysis of the relationship between the degree of economic freedom and foreign trade of selected developing countries for the period
( 1990 -2005) to determine the degree of economic freedom in foreign trade promotion in Singapore and Turkey. The research recommends a number of recommendations, the most important is the responsibility of the Ministry of Planning in Iraq that is providing the necessary data for the Fraser Institute, the aim of increasing cooperation
In this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho
... Show More