We introduce and discuss recent type of fibrewise topological spaces, namely fibrewise soft bitopological spaces. Also, we introduce the concepts of fibrewise closed soft bitopological spaces, fibrewise open soft bitopological spaces, fibrewise locally sliceable soft bitopological spaces and fibrewise locally sectionable soft bitopological spaces. Furthermore, we state and prove several propositions concerning these concepts.
The idea of ech fuzzy soft bi-closure space ( bicsp) is a new one, and its basic features are defined and studied in [1]. In this paper, separation axioms, namely pairwise, , pairwise semi-(respectively, pairwise pseudo and pairwise Uryshon) - fs bicsp's are introduced and studied in both ech fuzzy soft bi-closure space and their induced fuzzy soft bitopological spaces. It is shown that hereditary property is satisfied for , with respect to ech fuzzy soft bi-closure space but for other mentioned types of separations axioms, hereditary property satisfies for closed subspaces of ech fuzzy soft bi-closure space.
Abstract. Fibrewise micro-topological spaces be a useful tool in various branches of mathematics. These mathematical objects are constructed by assigning a micro-topology to each fibre from a fibre bundle. The fibrewise micro-topological space is then formed by taking the direct limit of these individual micro-topological spaces. It can be adapted to analyze various mathematical structures, from algebraic geometry to differential equations. In this study, we delve into the generalizations of fibrewise micro-topological spaces and explore the applications of these abstract structures in different branches of mathematics. This study aims to define the fibrewise micro topological space through the generalizations that we use in this paper, whi
... Show MoreThe goal of this article is to construct fibrewise w-compact (resp. locally w-compact) spaces. Some related results and properties of these concepts will be investigated. Furthermore, we investigate various relationships between these concepts and three classes of fibrewise w-separation axioms.
The concept of Cech fuzzy soft bi-closure space ( ˇ Cfs bi-csp) ( ˇ U, L1, L2, S) is initiated and studied by the authors in [6]. The notion of pairwise fuzzy soft separated sets in Cfs bi-csp is defined in this study, and various features of ˇ this notion are proved. Then, we introduce and investigate the concept of connectedness in both Cfs bi-csps and its ˇ associated fuzzy soft bitopological spaces utilizing the concept of pairwise fuzzy soft separated sets. Furthermore, the concept of pairwise feebly connected is introduced, and the relationship between pairwise connected and pairwise feebly connected is discussed. Finally, we provide various instances to further explain our findings.
The aim of this paper is to look at fibrewise slightly issuances of the more important separation axioms of ordinary topology namely fibrewise said to be fibrewise slightly T0 spaces, fibrewise slightly T1spaces, fibrewise slightly R0 spaces, fibrewise slightly T2 spaces, fibrewise slightly functionally T2 spaces, fibrewise slightly regular spaces, fibrewise slightly completely regular spaces, fibrewise slightly normal spaces. In addition, we announce and confirm many proposals related to these concepts.
The purpose of this paper is to consider fibrewise near versions of the more important separation axioms of ordinary topology namely fibrewise near T0 spaces, fibrewise near T1 spaces, fibrewise near R0 spaces, fibrewise near Hausdorff spaces, fibrewise near functionally Hausdorff spaces, fibrewise near regular spaces, fibrewise near completely regular spaces, fibrewise near normal spaces and fibrewise near functionally normal spaces. Also we give several results concerning it.
The soft sets were known since 1999, and because of their wide applications and their great flexibility to solve the problems, we used these concepts to define new types of soft limit points, that we called soft turning points.Finally, we used these points to define new types of soft separation axioms and we study their properties.
The primary objective of this research be to develop a novel thought of fibrewise micro—topological spaces over B. We present the notions from fibrewise micro closed, fibrewise micro open, fibrewise locally micro sliceable, and fibrewise locally micro-section able micro topological spaces over B. Moreover, we define these concepts and back them up with proof and some micro topological characteristics connected to these ideas, including studies and fibrewise locally micro sliceable and fibrewise locally micro-section able micro topological spaces, making it ideal for applications where high-performance processing is needed. This paper will explore the features and benefits of fibrewise locally micro-sliceable and fibrewise locally
... Show MoreThe main purpose of this paper is to introduce a some concepts in fibrewise totally topological space which are called fibrewise totally mapping, fiberwise totally closed mapping, fibrewise weakly totally closed mapping, fibrewise totlally perfect mapping fibrewise almost totally perfect mapping. Also the concepts as totally adherent point, filter, filter base, totally converges to a subset, totally directed toward a set, totally rigid, totally-H-set, totally Urysohn space, locally totally-QHC totally topological space are introduced and the main concept in this paper is fibrewise totally perfect mapping in totally top