The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of the previous stage. Improvements include the use of a new activation function, regular parameter tuning, and an improved learning rate in the later stages of training. The experimental results on the flickr8k dataset showed a noticeable and satisfactory improvement in the second stage, where a clear increment was achieved in the evaluation metrics Bleu1-4, Meteor, and Rouge-L. This increment confirmed the effectiveness of the alterations and highlighted the importance of hyper-parameter tuning in improving the performance of CNN-LSTM models in image caption tasks.
Rock failure during drilling is an important problem to be solved in petroleum technology. one of the most causes of rock failure is shale chemical interaction with drilling fluids. This interaction is changing the shale strength as well as its pore pressure relatively near the wellbore wall. In several oilfields in southern Iraq, drilling through the Tanuma formation is known as the most challenging operation due to its unstable behavior. Understanding the chemical reactions between shale and drilling fluid is determined by examining the features of shale and its behavior with drilling mud. Chemical interactions must be mitigated by the selection of suitable drilling mud with effective chemical additives. This study is describing t
... Show MoreA geographic information system (GIS) is a very effective management and analysis tool. Geographic locations rely on data. The use of artificial neural networks (ANNs) for the interpretation of natural resource data has been shown to be beneficial. Back-propagation neural networks are one of the most widespread and prevalent designs. The combination of geographic information systems with artificial neural networks provides a method for decreasing the cost of landscape change studies by shortening the time required to evaluate data. Numerous designs and kinds of ANNs have been created; the majority of them are PC-based service domains. Using the ArcGIS Network Analyst add-on, you can locate service regions around any network
... Show MoreIn information security, fingerprint verification is one of the most common recent approaches for verifying human identity through a distinctive pattern. The verification process works by comparing a pair of fingerprint templates and identifying the similarity/matching among them. Several research studies have utilized different techniques for the matching process such as fuzzy vault and image filtering approaches. Yet, these approaches are still suffering from the imprecise articulation of the biometrics’ interesting patterns. The emergence of deep learning architectures such as the Convolutional Neural Network (CNN) has been extensively used for image processing and object detection tasks and showed an outstanding performance compare
... Show MoreArtificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing flower pollination algorithm in the environmental field to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement. We estimate the regression function of the semi-parametric model by estimating the parametric model and estimating the non-parametric model, the parametric model is estimated by using an instrumental variables method (Wald method, Bartlett’s method, and Durbin
... Show MoreThis paper introduces a non-conventional approach with multi-dimensional random sampling to solve a cocaine abuse model with statistical probability. The mean Latin hypercube finite difference (MLHFD) method is proposed for the first time via hybrid integration of the classical numerical finite difference (FD) formula with Latin hypercube sampling (LHS) technique to create a random distribution for the model parameters which are dependent on time [Formula: see text]. The LHS technique gives advantage to MLHFD method to produce fast variation of the parameters’ values via number of multidimensional simulations (100, 1000 and 5000). The generated Latin hypercube sample which is random or non-deterministic in nature is further integ
... Show MoreABSTRACT: BACKGROUND: Left ventricular hypertrophy is a significant risk factor for cardiovascular complications such as ischemic heart disease, heart failure, sudden death, atrial fibrillation, and stroke. A proper non-expensive tool is required for detection of this pathology. Different electrocardiographic (ECG) criteria were investigated; however, the results were conflicting regarding the accuracy of these criteria. OBJECTIVE: To assess the accuracy of three electrocardiographic criteria in diagnosis of left ventricular hypertrophy in adult patients with hypertension using echocardiography as a reference test. PATIENTS AND METHODS: This is a hospital-based cross sectional observational study which included 340 adult patients with a his
... Show MoreFlexible job-shop scheduling problem (FJSP) is one of the instances in flexible manufacturing systems. It is considered as a very complex to control. Hence generating a control system for this problem domain is difficult. FJSP inherits the job-shop scheduling problem characteristics. It has an additional decision level to the sequencing one which allows the operations to be processed on any machine among a set of available machines at a facility. In this article, we present Artificial Fish Swarm Algorithm with Harmony Search for solving the flexible job shop scheduling problem. It is based on the new harmony improvised from results obtained by artificial fish swarm algorithm. This improvised solution is sent to comparison to an overall best
... Show MoreBackground: Although various imaging modalities are available for evaluating suspicious breast lesions, ultrasound-based Shear-Wave Elastography (SWE) is an advanced, non-invasive technique complementary to grayscale sonography. This technique evaluates the elasticity of a specific tissue by applying sonic pressure to that tissue.
Objective: The aim is to assess the role of SWE in evaluating solid breast masses in correlation to histopathological study results.
Subjects and Methods: This prospective study was done in a tertiary care teaching hospital from September 2019 to August 2020. A study population of 50 women aged 18 years or above with an
... Show MoreThe formal investigation of the interior spaces of the residential bedrooms for children with autism is one of the basic tasks that should be known by the interior designer. Achieving an atmosphere compatible with his health condition, which contributes to generating a sense of spatial intimacy through the design dimension provided by the interior designer and his tireless endeavor to meet the needs of the child in an internal environment that achieves the functional dimension and spiritual approaches that enhance the child’s sense of spatial belonging and contribute to improving his mood and this positively reflects on his behavior and social integration. The current research has reached the most important design criteria that must be
... Show More