Grey system theory is a multidisciplinary scientific approach, which deals with systems that have partially unknown information (small sample and uncertain information). Grey modeling as an important component of such theory gives successful results with limited amount of data. Grey Models are divided into two types; univariate and multivariate grey models. The univariate grey model with one order derivative equation GM (1,1) is the base stone of the theory, it is considered the time series prediction model but it doesn’t take the relative factors in account. The traditional multivariate grey models GM(1,M) takes those factor in account but it has a complex structure and some defects in " modeling mechanism", "parameter estimation "and "model structure", So that traditional GM(1,M) submitted to many trials of optimizations to getting rid this defects. This research shows the characteristics of the traditional GM(1,M), the problems it suffer from, the method of getting rid of such problems and presents two optimized multivariable grey model of one order derivative equation. the first one is called the Optimized Grey Model abbreviated as OGM(1, M) by adding the linear correction term h1(M-1)and the grey action quantity term (h2) to the traditional model GM(1,M) the latter is called Optimized Background value Grey Model OBGM(1,M) by optimizing the Background value of the last model OGM(1,M). We use two A realistic data represents the water consumption in Baghdad at the period (2016-2022) to compare the two optimized models with the traditional represents the water consumption in Baghdad at the period (2016-2022)). we use the mean absolute percentage error (MAPE) and the determination coefficient R2. To compare the two optimized model with traditional one. The results show that the two optimized have less values than the those of the traditional model GM(I,M), and that verify the correctness of defects analysis of GM(1,M).
In this paper, the theoretical cross section in pre-equilibrium nuclear reaction has been studied for the reaction at energy 22.4 MeV. Ericson’s formula of partial level density PLD and their corrections (William’s correction and spin correction) have been substituted in the theoretical cross section and compared with the experimental data for nucleus. It has been found that the theoretical cross section with one-component PLD from Ericson’s formula when doesn’t agree with the experimental value and when . There is little agreement only at the high value of energy range with the experimental cross section. The theoretical cross section that depends on the one-component William's formula and on-component corrected to spi
... Show MoreIn this study, a cholera model with asymptomatic carriers was examined. A Holling type-II functional response function was used to describe disease transmission. For analyzing the dynamical behavior of cholera disease, a fractional-order model was developed. First, the positivity and boundedness of the system's solutions were established. The local stability of the equilibrium points was also analyzed. Second, a Lyapunov function was used to construct the global asymptotic stability of the system for both endemic and disease-free equilibrium points. Finally, numerical simulations and sensitivity analysis were carried out using matlab software to demonstrate the accuracy and validate the obtained results.
Rutting is a crucial concern impacting asphalt concrete pavements’ stability and long-term performance, negatively affecting vehicle drivers’ comfort and safety. This research aims to evaluate the permanent deformation of pavement under different traffic and environmental conditions using an Artificial Neural Network (ANN) prediction model. The model was built based on the outcomes of an experimental uniaxial repeated loading test of 306 cylindrical specimens. Twelve independent variables representing the materials’ properties, mix design parameters, loading settings, and environmental conditions were implemented in the model, resulting in a total of 3214 data points. The network accomplished high prediction accuracy with an R
... Show MoreImage compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show MoreThe charge density distributions (CDD) and the elastic electron
scattering form factors F(q) of the ground state for some even mass
nuclei in the 2s 1d shell ( Ne Mg Si 20 24 28 , , and S 32 ) nuclei have
been calculated based on the use of occupation numbers of the states
and the single particle wave functions of the harmonic oscillator
potential with size parameters chosen to reproduce the observed root
mean square charge radii for all considered nuclei. It is found that
introducing additional parameters, namely 1 , and , 2 which
reflect the difference of the occupation numbers of the states from
the prediction of the simple shell model leads to a remarkable
agreement between the calculated an
Semi-parametric models analysis is one of the most interesting subjects in recent studies due to give an efficient model estimation. The problem when the response variable has one of two values either 0 ( no response) or one – with response which is called the logistic regression model.
We compare two methods Bayesian and . Then the results were compared using MSe criteria.
A simulation had been used to study the empirical behavior for the Logistic model , with different sample sizes and variances. The results using represent that the Bayesian method is better than the at small samples sizes.
... Show MoreCongenital anomalies commonly occur in humans, possibly visible. If these anomalies appear in visible parts in human body such as face, hands and feet. They may only appear after utilizing a number of special tests in order to show by means of the anomalies that occur in the internal organs of the body such as heart, stomach and kidneys.
Research data have comprised accessible information in the anomalies birth statistics form situated of Health and Life Statistics section at the Ministry of Health and environment, where the number of anomalies births involved in the study (2603 anomalies birth) in Iraq, except Kurdistan region, at 2015. A two way-response logistic regression analysis h
... Show MoreNon-Small Cell Lung Cancer (NSCLC) accounts for about 84% of all lung cancer types diagnosed so far. Every year, regardless of gender, the NSCLC targets many communities worldwide. 5-Fluorouracil (5-FU) is a uracil-analog anticancer compound. This drug tends to annihilate multiple tumour cells. But 5-FU's most significant obstacle is that it gets very easily metabolized in the blood, which eventually leads to lower anticancer activity. Therfore a perfect drug delivery system is needed to overcome all the associated challenges.
In this experiment, an attempt was made to prepare 5-FU loaded poly lactic-co-glycolic acid nanoparticles using solvent evaporation method and subsequently observed the effect of molecular weight of poly l
... Show MoreABSTRICT:
This study is concerned with the estimation of constant and time-varying parameters in non-linear ordinary differential equations, which do not have analytical solutions. The estimation is done in a multi-stage method where constant and time-varying parameters are estimated in a straight sequential way from several stages. In the first stage, the model of the differential equations is converted to a regression model that includes the state variables with their derivatives and then the estimation of the state variables and their derivatives in a penalized splines method and compensating the estimations in the regression model. In the second stage, the pseudo- least squares method was used to es
... Show MoreAn edge dominating set of a graph is said to be an odd (even) sum degree edge dominating set (osded (esded) - set) of G if the sum of the degree of all edges in X is an odd (even) number. The odd (even) sum degree edge domination number is the minimum cardinality taken over all odd (even) sum degree edge dominating sets of G and is defined as zero if no such odd (even) sum degree edge dominating set exists in G. In this paper, the odd (even) sum degree domination concept is extended on the co-dominating set E-T of a graph G, where T is an edge dominating set of G. The corresponding parameters co-odd (even) sum degree edge dominating set, co-odd (even) sum degree edge domination number and co-odd (even) sum degree edge domin
... Show More